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Abstract

Local governments often restrict the construction of new housing through zoning and per-
mitting hurdles. This resistance suggests that increasing the housing stock in an area may
harm some of its existing residents. Understanding these losses is key to facilitating new
housing construction. In this paper, we aim to measure who gains and who loses from a local
increase in the housing supply, and why. We build a model of household location choices
over time, allowing us to measure the effect of construction on amenities, prices, and local
taxes. To estimate this model, we employ detailed data describing individual housing units,
households and their migration patterns, local public finances, and zoning regulations.
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1 Introduction

Many urban areas around the world face a mounting affordability crisis: housing production
has stalled, and rents in most large cities have risen far faster than overall inflation. A growing
body of empirical research points to binding land-use regulations—local rules that dictate what
can be built where—as the chief culprit behind these supply shortfalls (Glaeser and Gyourko,
2018). The stringency of these regulations suggests that some incumbent residents expect to lose
from an expanded housing stock, even when aggregate welfare would rise. In this view, the key
constraint on construction is political, not technological or financial. This paper aims to measure
who gains and loses from additional housing construction, and why. Such measurement is key to
understanding the political economy of housing supply, and can help design politically feasible
reforms of land use regulations.

New construction can affect households through several channels, described in Section 2.
First, increases in housing supply will usually lead to a decrease in home prices and rents
(Asquith, Mast and Reed, 2023). This is detrimental to homeowners but benefits renters.
Second, new housing units can attract different types of households from those already living
nearby. Existing residents may welcome or dislike these demographic shifts (Diamond and
McQuade, 2019). Third, new construction can impose fiscal externalities on incumbent residents.
Municipalities set a local property tax rate to finance local public goods, notably schools, while
maintaining a balanced budget (Fischel, 2002). If new housing units are less valuable than
existing ones, the revenue they generate may fall short of the cost of the additional public
services they require. To close this gap, local governments may be forced to raise the property tax
rate for all households. Fourth, new construction increases local density, which some households
may dislike (Gyourko and McCulloch, 2024). These pecuniary and non-pecuniary externalities
imposed by new construction explain the strict rules that municipalities enact to restrict new
construction. Using detailed zoning maps from Zoneomics, covering 9,764 zoning jurisdictions
across the United States and 75% of the country’s population, we show that zoning favors the
construction of large, single-family housing units on large plots of land—the types of housing
units that impose the lowest costs on incumbent residents.

Section 3 introduces a simple framework for assessing the welfare effects of new construction.
Adding housing in one location alters amenities (through demographics and density), prices,
and taxes not only there but across all locations. An approximation of the impact of these shocks
on a household’s welfare can be decomposed into four components: an amenity effect, a price
effect, a fiscal effect, and a relocation effect. Quantifying these channels requires information on
(i) households’ initial locations and real estate holdings; (ii) their migration probabilities across
destinations over time; and (iii) how new construction shifts amenities, prices, taxes, and the
likelihood of relocating in all locations.

While some of these variables can be directly observed in the data (such as households’



initial locations and migration probabilities), measuring how increasing the housing stock in
one location shifts prices, amenities, and tax burdens everywhere requires a model. We develop
a model of household location choice in which, in each period, households select a housing
unit to occupy. Housing units can be either rented or owned, and they differ in their location
and characteristics. These attributes are valued heterogeneously by households. In particular,
households vary in their preferences for neighborhood demographics and density, which can
evolve over time as households relocate. Migration is costly, especially over longer distances and
for older households. Municipalities fund local public goods through a property tax. Finally, the
price of housing units is determined by market clearing.

We apply this framework to study the effects of housing construction in New Jersey, which
offers an attractive case study. In this state, all land is fully incorporated into municipalities with
stable boundaries, most local public goods are financed through property taxes, and school dis-
tricts typically coincide with municipal borders. Our analysis requires detailed data (described
in Section 4) on local housing supplies, household location choices, and municipalities” tax
policies. Assembling data from commercial and publicly available sources (CoreLogic, Smarty,
and the New Jersey Geographic Information Network), we build a dataset of all residential
units in New Jersey, along with their characteristics. We associate these housing units with
the households living in them, and track the movements of these households over time using
data from Infutor. We measure the demographic characteristics of these households using data
from the Census and ACS, and by matching their mortgages to data collected under the Home
Mortgage Disclosure Act. We measure the value of housing units using listings and transactions
data (again provided by CoreLogic). We finally gather data on local governments’ finances from
the Census of Governments and New Jersey’s Department of the Treasury.

The model can be estimated using a revealed preferences approach similar to that of Bayer,
Ferreira and McMillan (2007). Different types of households choose different locations to live in,
revealing their valuation of different neighborhood and housing unit attributes. Some of these
attributes (prices and local demographics) are endogenous, and measuring how households
value them requires an instrumental variables strategy. For identification, we plan to draw
on BLP instruments for the valuation of prices and a boundary design for the valuation of
neighborhood demographics and density. Comparing the value of similar homes on opposing
sides of a municipal border is informative on households’ valuation of municipal characteristics,
and comparing the value of homes located close to a municipal boundary to those located
further away helps identify households’” valuation of their immediate neighborhood. We find
that households strongly value both the demographics of their immediate neighborhood and
those of the broader municipality in which they live.

The estimated model will allow us to measure the effects of building an additional housing
unit of a given type (e.g., a two-bedroom apartment) in a given location (e.g., on a specific street

in Princeton) on the prices, neighborhood demographics, and property taxes of all housing units,



and, in turn, on the welfare of any household. These welfare changes can be decomposed in a
supply effect, an amenities effect, and a fiscal effect, allowing us to understand what drives the
distributional effects from new construction.

To validate our model, we plan to leverage event study estimates of the effects of building
a new multifamily building on the value of nearby preexisting buildings. In our data, we
identify events in which a new multifamily building was completed and implement a staggered
difference-in-differences design comparing areas that experienced construction earlier vs. later.
This analysis shows that multifamily construction reduces the value of nearby single-family
homes, but only in higher-income neighborhoods. We can simulate analogous construction
events within our model and compare the predicted effects to these reduced-form estimates—

consistency between the two would strengthen the credibility of our model’s results.

Contribution to the literature. Studies evaluating the effects of housing supply expansions
tend to measure the local price impacts of new construction, usually finding that additional
housing lowers nearby property prices (e.g., Li, 2022; Asquith, Mast and Reed, 2023; Pennington,
2021). However, these effects vary widely depending on the type and location of construction
(Diamond and McQuade, 2019; Blanco and Sportiche, 2024). Furthermore, due to migration,
the price effects of new construction extend well beyond the immediate neighborhood where
construction occurs (Mast, 2023). Finally, these price changes bundle the effects of changes in
housing supply, amenities, and taxes, and reflect the preferences of the marginal household that
chooses to live in the neighborhood. Our analysis confirms that new construction affects local
prices heterogeneously, and builds a model of households’ preferences and migration behavior.
Our framework can rationalize the heterogeneous effects of construction through variation in
household preferences. It can further evaluate the diffuse price effects of construction far
from the construction site. Finally, it can disentangle the different channels through which
construction affects prices and welfare, and evaluate the full distribution of the welfare effects
of construction, including on the non-marginal residents of the neighborhood in which it takes
place.

Disentangling the channels through which new construction affects welfare—and measuring
the full distribution of these welfare effects—is central to understanding the political economy
of land use regulation. A large literature articulates rationales for such regulation. In the
homevoter view, zoning protects incumbent homeowners and their property values (Fischel,
2002). Research has also shown that households highly value living in higher-income municipal-
ities (Boustan, 2013), and are especially sensitive to the demographic characteristics of their close
neighbors (Bayer, Casey, McCartney, Orellana-Li and Zhang, 2022). These preferences give rise
to an exclusionary motive for zoning, which largely contributed to the adoption of strict zoning
rules in the postwar United States (Sahn, 2025; Cui, 2024). The concurrent fiscal motive for
zoning was initially outlined by Hamilton (1975) and Oates and Mills (1975), and later refined by



Calabrese, Epple and Romano (2007, 2012), Barseghyan and Coate (2016), and Brueckner (2023).
He, Nelson, Su, Zhang and Zhang (2022) show that fiscal motives are key to understanding
zoning policy in China, and Krimmel (2021) shows that California’s local governments adopted
stricter zoning rules to preserve the quality of local public goods. Disentangling the rationales
underlying land use regulation is challenging. For instance, building new multifamily housing
may lower local property values through a supply effect, by increasing the share of lower-income
and minority households in the neighborhood, or by increasing the property tax burden of
incumbent residents. This paper provides a unified framework to jointly study and quantify
these channels. By disentangling them, our contribution aims at illuminating which rationales
for land use regulation may be the most potent. Understanding the rationales underlying
land use regulation is key to understanding which policies are most likely to promote housing
construction. For instance, if fiscal motives justify strong local opposition to development,
redistribution between municipalities based on housing construction may prove efficient in
promoting housing construction.

By measuring the interjurisdictional spillovers generated by new construction, our analysis
informs the long-standing debate on the optimal level of policy decentralization (Tiebout, 1956;
Olson, 1969; Oates, 1999; Besley and Coate, 2003).1 This question is particularly important in
the context of housing construction, where the households who lose from new development
are few and geographically concentrated—making it easier for them to coordinate and lobby
against it—while the gains from construction are widely dispersed. These correspond exactly
to the conditions under which the harmful distributional coalitions, special interest groups who
seek to protect benefits within the group at the expense of broader welfare, described by Olson
(1982) are likely to emerge.

The framework we develop to measure the distributional effects of housing construction
incorporates the key features required to accurately measure these effects. First, it represents
locations with a very fine spatial granularity. Indeed, the effect of building new housing units
is much stronger for households on the same street than on others living one half a mile away.
Our model also features rich heterogeneity in both household characteristics and housing types.
Indeed, whether households are homeowners or renters crucially affects whether they benefit
or lose from changes in home prices. Beyond homeownership, households vary greatly in their
valuation of different amenities, which leads them to sort into different types of neighborhoods
and housing units. Accordingly, increasing a neighborhood’s housing supply by 10,000 units
will have very different effects on neighborhood demographics depending on whether the new
construction consists of small apartments or large mansions, and local demographic shifts from

construction matter much more to some households than to others. Finally, our model features

IThis relates our work to Bordeu (2023), who measures interjurisdictional externalities in the context of
infrastructure improvements, and a literature on municipal competition, summarized in Agrawal, Hoyt and Wilson
(2022)



household mobility, which is essential to capture the diffuse effects of construction. Because of
migration, increasing the housing supply in one neighborhood shifts prices and demographics
everywhere, and hence indirectly affects all households. Furthermore, households initially far
from the construction event are directly affected by the changes in the treated neighborhood to
the extent that they may live there in the future.

To develop a model that incorporates these features, we build on two types of approaches
in the literature: static models that accommodate many locations, housing types, and hetero-
geneous preferences (Bayer et al., 2007, e.g.,), and dynamic models that describe migration
but typically restrict the number of locations for tractability (Almagro and Dominguez-lino,
2025; Greaney, Parkhomenko and Van Nieuwerburgh, 2025). Our framework bridges these
approaches: we extend static models to account for migration while maintaining tractability
by assuming that households are myopic and that prices and amenities converge quickly to a
new steady state after a shock.

The estimation of our model requires highly granular data on housing units and household
location choices. While such datasets are now widely used in the literature, this paper introduces
two data contributions. First, we provide new facts on zoning regulations across the United
States using zoning maps from Zoneomics. Second, we build a dataset of all housing units in
New Jersey, including those inside multifamily buildings. Such datasets have been challenging
to build in the United States, where administrative data typically derives from tax assessment
rolls, which enumerate parcels but rarely the units within them, limiting the coverage of
apartments and pushing empirical work toward single-family homes. The procedure we follow
to build a comprehensive dataset of housing units can easily be replicated in other states, and
is valuable as multifamily buildings account for a large share of the housing stock, are key
to densification and providing affordable housing, and are the building types that spur the

strongest local opposition.

2 Rationales for Restricting Housing Supply

New housing construction affects home values, local amenities, and may trigger changes in
property tax rates. We start our analysis by describing how increasing housing supply affects
households through these channels, focusing on the potential losses from densification. New
data from zoning maps allows us to describe the land use regulations that municipalities impose

to protect incumbent residents.

2.1 How does new construction affect welfare?

Supply effects. Several studies have shown that new construction in an area typically lowers

the value of preexisting buildings there (Li, 2022; Asquith et al., 2023; Pennington, 2021; Blanco



and Sportiche, 2024), consistent with a higher supply of housing lowering its price. This benefits

renters, but harms homeowners, who will realize a lower capital gain upon selling their home.

Demographics. Interestingly, a higher housing supply sometimes increases local home prices.
Diamond and McQuade (2019), for instance, found that new construction in low-income neigh-
borhoods attracted richer households and increased the value of nearby homes. However,
building low-income housing units in more affluent neighborhoods lowered local home values.
These results highlight that new construction can change neighborhood demographics, which
in turn shift local amenities.

How new construction shifts local demographics depends crucially on the type of housing
that is being built, and in particular whether it consists of single-family homes or multifamily
buildings. Different types of homes attract different types of households (see Appendix Ta-
ble B.1). In New Jersey, households in multifamily buildings have an average income 51% lower
than those living in single-family homes in the same area. There are also 14 pp less likely to
be white. Consistently, there is a strong correlation between the share of single-family homes
in a municipality and that municipality’s demographics—see Figure 1(a). Among single-family
dwellings, larger homes built on larger plots of land will be more expensive and inhabited by
richer households.

When households value living among wealthier neighbors, the construction of homes that
are smaller and less expensive than existing ones will likely lower the area’s average household
income and lead to a decrease in local amenities. This creates an incentive for municipalities to
resist densification, which typically requires building multifamily housing or homes on smaller
lots.

Incumbent residents may resist the entry of lower-income residents because they directly
reduce their utility, or because demographics affect other local public goods, such as schools.
There is indeed a stark correlation between municipal demographics and school test scores,
illustrated in Figure 1(b). Residents may value the quality of schools directly or indirectly, as

higher test scores increase home values.

Externalities from density. Demographic change is not the only channel through which new
construction can affect local amenities. Densification may directly decrease local amenities
through increases in noise, pollution, and traffic (Kashner and Ross, 2025). Furthermore,
construction can eliminate green spaces: Figure 1(c) shows that residents in municipalities with
a higher proportion of single-family homes enjoy greater tree exposure, a feature households
strongly value (Han, Heblich, Timmins and Zylberberg, 2024).

These negative impacts of construction may be mitigated by agglomeration externalities.
Indeed, higher density in an area can trigger additional public investment there, and spur the

growth of consumption amenities such as shops and restaurants.



Figure 1: Rationales for a municipality to restrict densification
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Notes: This Figure illustrates rationales for a municipality to resist densification. Panel (a) shows the correlation
between the share of single-family units in a municipality and that municipality’s median household income.
Panel (b) shows the correlation between the median household income in a municipality and the test scores of
its 4th-grade classes, weighting observations by the number of children in each municipality. Panel (c) shows the
correlation between the share of single-family units in a municipality and the average tree canopy cover within
500 meters of its residential properties. Panel (d) shows the correlation between the median home value in a
municipality and its effective property tax rate. The share of single-family units, household incomes, and home
values in a municipality are extracted from the ACS. Other data sources are described in Appendix A.

Property taxes. Local governments rely heavily on property taxes to fund public services,
with education being the most significant expenditure (see Appendix Figures B.1 and B.2).

Consequently, areas with lower property values must implement higher tax rates to finance



public goods, as illustrated in Figure 1(d).?

Because local governments rely on the property tax, new construction affects incumbent
households through a fiscal channel. While new housing units expand the property tax base,
they also generate new public expenditures (for example, by increasing enrollment in local
schools). When the cost of these new services outweighs the additional revenue, the local
government must increase the property tax rate on incumbent households to maintain budget
balance.

Within a jurisdiction, the property tax will implicitly redistribute income from residents of
large and expensive homes to residents in smaller, inexpensive dwellings. As shown by Huang
(2025), these transfers are quantitatively large, and make fiscal externalities of new construction
economically relevant. In New Jersey, the average homeowner pays $9,600 in property taxes
each year, corresponding to 7% of the state’s average household income.

2.2 Protecting incumbent residents through zoning

Through land use regulations, residents of a municipality can influence the number and charac-
teristics of new homes. These regulatory choices partly reveal the preferences of incumbent
residents and are informative about the distributional effects of building different types of
dwellings.

To understand how incumbent residents leverage regulation to shield themselves from the
negative effects of construction outlined above, we rely on data from Zoneomics, which provides
detailed zoning maps for 9,764 zoning jurisdictions across the United States, covering 75% of the
country’s population (see Appendix Figure B.4).> Zoning maps divide land into a set of zones,
each being associated with rules on new construction.

The vast majority of jurisdictions (93%) reserve a fraction of their residential land for low-
density structures (single-family or two-family dwellings only). In our sample, 79% of the
residential land in the United States is exclusively zoned for low-density homes, and only 21%
of the residential land allows the construction of higher-density, multifamily housing. On top of
these restrictions privileging the construction of low-density housing, municipalities routinely
impose policies that favor high consumption of land: minimum lot sizes, mandatory setbacks,
and lot coverage limits (see Figure 2).

These zoning regulations are consistent with the expected effects of new construction de-
scribed in Section 2.1. Indeed, the construction of homes on smaller areas of land, and the

construction of multifamily housing in particular, is likelier to harm incumbent residents,

2Spending on local public goods weakly correlates with households” income. In New Jersey, municipalities
with a median household income in the bottom quintile spent $15,700 per household in 2017 on local public goods
provision. Municipalities in the top quintile spent $16,100 per household.

3While most zoning decisions are made by municipalities, other levels of government (counties, in particular)
enact zoning rules on unincorporated land and also constitute zoning jurisdictions.



Figure 2: Prevalence of zoning instruments in the United States
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Notes: This Figure shows the share of municipalities in the Zoneomics dataset that have adopted different zoning
instruments. A municipality is considered to have adopted an instrument if at least one zone in its zoning map
imposes restrictions on residential construction through that instrument. Mandatory setbacks correspond to rules
imposing a minimum front yard, rear yard, or side yard. The Floor Area Ratio (FAR) of a property is defined as
the amount of floorspace on the property divided by its land area. A single-family zone is defined as a zone that
allows single-family dwellings, but not two-family or multifamily dwellings. Maximum lot coverage rules impose
a maximum share of a property that can be covered by buildings and other impervious surfaces. Finally, dwelling
unit density limits impose a maximum on the number of allowed units per acre of land.

especially if they are homeowners. Housing units that use land less intensively tend to attract
lower-income households, will raise less property tax revenue than large single-family homes,
and impose larger externalities, for instance through reduced open space and higher local
traffic. Accordingly, zoning regulations tend to restrict the construction of such housing while

promoting that of single-family homes on large plots of land.

3 Theoretical Framework

The local effects of new construction on prices, amenities, and fiscal balance have been studied
independently. The goal of this paper is to measure these effects jointly, with a high degree of

granularity, and beyond the area immediately near construction.

3.1 The welfare effects of housing construction

We first develop a theoretical framework that can account for the different channels through
which construction affects welfare. Building new housing influences housing prices, amenity
levels, and property taxes, not only in the immediate neighborhood where construction occurs,
but also in areas further away through spillover effects. Even in the absence of spillovers,
households initially located far from the new units may still be affected over their life cycle.
If they choose to move to the area where construction occurred, they will face different prices,

amenities, and taxes than if new housing had not been built.



Exposure to amenity and rent shocks. Consider a simple model in which households live in
periods {0, 1, ..., T}. At the beginning of each period, they choose a location to live in. Locations
(which can represent, e.g., municipalities, housing units) are characterized by an amenity level
By and a rent level R;. Households have income level I, and their disposable income, used for
consumption, is given by Cy = I — Rx. Moving between locations is costly, and households
draw each period idiosyncratic preferences for each location. If a household starting a period in

j decides to live in k, it will receive a flow utility
Ujk = Bx + vCx — jk + & = Ujk + &, 1)

where 7y captures the extent to which households value consumption relative to amenities, y ik
is the cost of moving from j to k, and ¢ is an idiosyncratic preference shock for location k,
distributed according to a Gumbel distribution with shape ¢ and mean zero. Rents are paid to
an absentee landlord.

For simplicity, assume that households are myopic and choose each period the location that
maximizes their flow utility. Then, the probability with which a household initially in j moves to
k is P = M, and the row vector 7t; = 7oP' measures the probability with which

Yoexp(uj/o)
a household is in each location at any period (with 7Ty capturing the initial location of the

household).

Households” expected lifetime welfare is given by E[W] = Y, p! (m:), where U; =
olog [Lxexp(uj/c)] the expected flow utility of a household starting a period in j. Consider
a shock that permanently shifts amenities and rents just after households made their initial

location choices. The approximation of the effect of this shock on expected lifetime utility is

given by
Exposure vector
——
T T T B
dE[W] = (Z [5%}) dB - (2 ﬁtm> ~ydR + (Z ‘BthCt> . 2)
t=0 t=0 t=0
Amen;tgi effect Price effect Relocation effect
The first term captures households’ direct exposure to amenity changes. Indeed,
E, = (ZtT:o ,Btrrt) captures the expected number of (time-discounted) periods the agent
1

will spend in location i, and E;dB; captures the change in the agent’s welfare due to their
exposure to location i. Similarly, the second term captures households’ direct exposure to rent
changes: lowering the rent by a dollar in location i increases the agent’s lifetime discounted
consumption by E; dollars, and increases their utility by that amount. The last term, equal to
dE - U, captures the fact that the shock shifts households’ exposure to different locations. For
instance, lowering rents in a high-amenity location (and hence a high-U location) will increase

migration to that location. This increases households” exposure to high-amenity locations and
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increases welfare beyond the direct effect of rent decreases.

Accounting for homeownership. A major limitation of the model described above is its
assumption that all households are renters. In reality, most households own their homes, and
price changes in a location have opposite effects on the welfare of a household living there,
depending on whether they are a homeowner or a renter. Indeed, increases in home values
are immediately detrimental to renters, who have to dedicate a higher share of their income to
rent payments and must reduce their consumption. Homeowners, on the other hand, see no
immediate change in their housing costs, but will realize a higher capital gain upon migrating
and selling their home. Therefore, higher home values increase their future liquid wealth and
consumption, and therefore their welfare.

To see how equation (2) can be adjusted to account for homeownership, consider a variation
of the model described above in which all households are homeowners. The simplest way
to model homeownership is to assume that households hold liquid wealth A, and that liquid
wealth decreases (resp., increases) when buying (resp., selling) a home by the transaction price
of that home. A household’s consumption is given by C = I + rA. Hence, a household initially
starting with zero wealth buying a home at price P will have a consumption of I — rP, where
R = rP can be interpreted as a yearly mortgage payment for the home.

Again, we can measure the effect of a shock that shifts prices and amenities. This time, the

approximate effect of the shock on households” welfare is given by

dE[W] = (iﬁfm> -dB  + (i B (o — m)) -ydR + (iﬁ’ﬁm) a. ()
t=0 t=0 t=0

[\

Amenity effect Price effect Relocation effect

The first and last term of this expression are identical to those of equation (2). The second term,
however, now takes into account households’ initial stake in the housing market. The ith element
of Y B!(rtg — 7r+) measures the household’s net position as a seller versus a consumer of housing
in location i, discounted over the household’s lifetime.

Consider a shock that decreases the price of homes in location i by dP;. If a household starts
in location i and never moves over the course of its lifetime, it never realizes any capital losses
and its exposure to the price change is zero. Conversely, if that household moves to another
location in the first period and never comes back, its liquid asset holdings will be lowered by dP;
for all periods {1, ..., T} relative to a scenario where the shock did not take place. This lowers the
household’s consumption by r dP; each period, for a total welfare loss of y YL, g'r dP..

When prices drop in a location, this leads to a concentrated welfare loss for incumbent
homeowners in that location, and a diffused welfare gain among households in other locations,

who will face lower housing costs if they move to the affected location at one point over their
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life cycle. The welfare gains fully offset welfare losses. Indeed, summing (7tp); and (7t;); across
households yields the number of housing units in location 7 in both cases, and the second term

of equation (3) therefore averages zero across households.

General framework. The model developed above can be generalized to allow households to
choose between renting and owning their home, to account for the payment of property taxes,
and to relax the assumption of an absentee landlord. To this end, suppose that the locations of
the model are individual housing units. Units are either always rented out or always owner-
occupied. Unit owners must pay each year a property tax and maintenance costs, totaling T and
possibly varying from one unit to the next. The yearly cost of housing is T for a homeowner and
R + T for a renter. Homes are transacted at a price P = R/r. The approximation of the effect of
a shock on the household’s expected welfare is given by

dE[W] = (i,ﬁtm> -dB + (i BH(m§ — m)) ~ydR — (iﬁtrtl) -dT + <i ,Btdn't> U, )
=0 =0 =0 =0

Amenity effect Price effect Fiscal effect Relocation effect

where 7t denotes the asset holdings of the household at time 0. (7); is equal to one if the
household owns home i and zero otherwise. The introduction of taxes and maintenance adds
a final term to the approximate effect of a shock: an increase in T in one location decreases the

household’s expected welfare proportionally to the its exposure to that location.

New housing construction. In this framework, the construction of a new housing unit can
be modeled as the introduction of a new location and the expansion of households” migration
choice set. In this location, 71; can be positive following construction, instead of equal to zero in
all periods.

New construction affects welfare through several channels. First, by changing local density
and demographics (depending on who migrates to the new housing unit), it may affect local
amenities. Second, construction may prompt municipalities to adjust their property tax rates.
Third, the increase in local housing supply, as well as accompanying changes in amenities and
taxes, will change market clearing rents in all locations. On top of these channels, described in
Section 2, equation (4) points to a final effect of new construction: the relocation effect. New
construction will increase overall utility if it shifts households towards high-U locations.*

To quantify the welfare effects of building new housing, we need estimates of vy, 7, and U,
as well as measures of the local shocks caused by new construction (AB, AR, AT, and Arty).
Apart from AR and AT (which are common shocks across households) all of these variables will

typically vary from one household to the next.

41f migration were costless and agents had no idiosyncratic preferences, spatial equilibrium would imply a
uniform U across locations, making the relocation effect vanish.
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3.2 Household location choices

To evaluate how new construction shifts amenities, rents, taxes, migration behaviors, and
ultimately welfare gains and losses, we extend the framework and specify a model of household

location choice that determines how location characteristics evolve.

Model setup. We consider the housing choices of a finite set of households i € Z. At the
beginning of each period ¢, they choose whether to remain in their current housing unit or move
to another. A household starting in unit j and deciding to spend the period in location k € H

(where k can be j) receives a flow utility
wit(j—k) = Bir(k) + it Cir (k) — pir (j = k) + sk, (5)

where Bj;(k) is the amenity level of unit k, Cj;(k) is the consumption level of household i if it
decides to live in k, p;j;(j — k) is a moving cost associated with moving from j to k, and &
is an idiosyncratic preference shock. Each housing unit has a fixed tenure type, denoted by
the binary variable Oy € {0,1} where O; = 1 if the unit is owner-occupied instead of rented.
Households are myopic: they ignore future periods when making their decisions, and assume
that future conditions will be similar to current conditions. z;; are demographic characteristics

of household i, such as income level, race, and age of the household head.

Amenities. The amenity level associated with unit k is
Biy(K) = a Xpa + . (6)

where Xj; are observable characteristics of units and ¢ is an amenity shock that reflects
characteristics of the unit that are unobservable to the econometrician, including unobservable
characteristics of the municipality in which it is located. Xy = [X}™f; X000 includes
both unit characteristics X{™* (such as the unit’s square footage and number of bedrooms and
bathrooms), and location characteristics X}gcaﬁ(’n (such as local demographics and density).
The weights households place on observable amenities are a linear function of household
demographics, with

aip = ug + Azjp. @)

Where the (I,m) coefficient in matrix A measures the extent to which the mth household
demographic (e.g., income) affects its valuation of the /th location characteristic (e.g., square
footage).

Cost of housing. A household’s consumption is its income I; minus the cost of housing, Hj; (k).

Housing costs sum over rent R, property taxes and maintenance costs T, or interest paid on real
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estate debt A.
Cit(k) = I; = Hiy(k) = I; — (1 — Og) Ryt + Tie +1 Ajy). (8)

Rents are only paid for rented units (with Oy = 0). We assume property taxes and maintenance
costs Tj; are paid by the units” occupants, whether they are owners or renters. Accordingly, the
rent Ry; excludes Tj;. Finally, real estate debt A evolves upon buying or selling a home. Buying
(resp., selling) a home at price P increases (resp., decreases) A by that amount. The price of a
housing unit is given by a no-arbitrage condition: it is the discounted sum of the rental income
stream a (myopic) investor would expect from the unit: P; = O;Ry;/r, where O is the expected
occupancy rate of the unit.

Aj; corresponds to real estate debt holdings during period ¢t (measured after buying and
selling decisions have been made), and r A;; can be interpreted as annual mortgage payments.
Aj; can be negative (for instance, if a households decides to sell their home to rent another)—in
that scenario, r Aj; can be interpreted as interest received on liquid assets.

The relative weight <;; households place on consumption relative to amenities is a linear

function of demographics, with
Yie = Yo+ Zit- )

Migration costs. When a household changes housing units, it must pay the migration cost
Wit (] — k), with

‘uif(j_>k) =Ho + Ha d(j/ k) + Mage age;; + Hown O]‘+
pmund{m (k) # m(j)} + pstael{s(k) # s(j)}-

Migration costs increase with the geographical distance between the two units d(j, k), the head of
household’s age, tenure at a location, and if the original unit is owned instead of rented. Moving
across municipalities (m (k) # m(j)) or across states (s(k) # s(j)) is also associated with higher

migration frictions. Households who decide to stay in their housing unit pay no migration costs,

so pin(j—) = 0.

Property taxes and maintenance costs. Each period, municipalities (indexed by m) must
recover Ny T, of tax revenue, where Ny; is the number of housing units in m, and T, is the
average property tax paid across housing units. Municipalities impose a property tax rate Ty
such that the property tax contribution of housing unit k is T2 = 7,,;P;. To recover an average
tax revenue T}, across units, the municipality sets Ty = T}/ P, where P, is the average price of
housing units in m. This expression makes clear that adding to a municipality housing units that

are cheaper than the average preexisting housing unit increases the municipality’s equilibrium
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tax rate.”

Moving probabilities and equilibrium rents. When idiosyncratic shocks €;4 are i.i.d. accord-

ing to a standard type-I extreme value distribution, moving probabilities are given b
g YP gPp g y

exp{ Bit(k) + vit Cit(k) — pir(j—k) }

Y exp{Bit(€) + vit Cit(€) — uit(j—0)}
veH

Pi(j—k) =

(10)

As income is not tied to the location choice, these moving probabilities can also be expressed as

a function of solely amenities, housing costs, and migration costs.

exp{Bit(k) — it Hit(k) — pit(j—k) }

eZ’H eXP{Bz‘t(E) — vit Hit (€) — P‘it(jﬁg)} '

Py(j—k) =

(11)

Equilibrium rents are determined by market clearing. Because there are more housing units than
households, all housing units are not systematically occupied. However, we assume that rents
adjust such that each period, the expected number of households choosing each unit equals the
overall occupancy rate Os: Y ;7 Pit(jit—1 — k) = O

4 Data and Context

New Jersey offers an attractive case study for quantifying the distributional effects of new
construction and exploring the channels through which it influences welfare. Indeed, the state is
fully incorporated into municipalities with stable boundaries over recent decades, most local
public goods are financed through municipal property taxes, and school districts generally
coincide with municipal borders. This Section summarizes the rich data we gathered to measure
households’ location choices in New Jersey, as well as municipalities” tax and zoning policies.
Appendix A provides details about the data we collected, and Appendix B provides additional

descriptive statistics.

Housing units and home values. To measure the supply of housing in different locations

and its price, we primarily rely on proprietary datasets provided by CoreLogic. CoreLogic

Brosy and Langley (2025) show that municipalities in New Jersey adjust property tax rates in response to
changes in property values in order to keep the property tax levy approximately constant, consistent with our
model. By assuming that new construction does not alter the average tax revenue municipalities must raise per
housing unit, we are further assuming constant returns to scale in the provision of local public goods. This
assumption aligns with the literature on local public service production, which generally finds limited economies of
scale, particularly once jurisdictions reach moderate size (Gémez-Reino et al., 2023). Consistent with this evidence,
in New Jersey we observe that school districts’ per-student expenditures remain flat beyond an enrollment of
roughly 400 students (see Appendix Figure B.3).
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aggregates data from property tax assessments, sales records, and Multiple Listing Services.
Using their proprietary datasets, as well as datasets listing all addresses in New Jersey from the
open-source NJGIN and the commercial vendor Smarty, we build a dataset of all residential units
in the state. We associate them with characteristics such as whether the unit is a single-family
home, a duplex, or an apartment, the unit’s number of bedrooms and bathrooms, the unit’s size,
and the size of the lot on which the unit is located. Accurately capturing the total number of
residential units is challenging but required for estimating the model, which features households
that choose from all available units. Existing studies do not quantify the full supply of residential
housing. For example, in Diamond and McQuade (2019), unit counts of LIHTC structures are
unobserved while in Asquith et al. (2023), unit information is only measured for large apartment
buildings.

CoreLogic further provides data on real estate listings and sales, which allows us to measure

the price at which these housing units are traded.

Migration, ownership, and housing demand. To measure households” demand for housing,
we rely on revealed preferences and study households’ location choices over time. In particular,
we leverage data from Infutor that documents, for most households in the United States, the
list of their successive addresses as well as when they moved from one location to the next.
This address history additionally enables us to infer whether households are homeowners or
renters, as we link their address to the unit from CoreLogic and the housing type (single-family,
apartment, condo, etc.) of the unit.

We associate households with demographics using several sources. First, we link house-
holds with the mortgages they obtained using CoreLogic’s mortgage data. We then link these
mortgages with the Loan Application Register (LAR) database. This data, collected under the
Home Mortgage Disclosure Act (HMDA), lists mortgage applications submitted to financial
institutions, associating each with applicants’ race and income. While this data is anonymized,
it indicates each mortgage’s census tract, transaction date, loaned amount, loan type, and the
lender’s name. We use this data to match the LAR with CoreLogic mortgages, and hence to
households, using a procedure similar to that in Bayer et al. (2022). For households not covered
by the HMDA dataset, we recover demographics through a Bayesian procedure. Data from the
ACS allows us to infer the income and race of the household in a given housing unit (Cook,
2025, uses a similar approach). Following Diamond et al. (2019), we use the names of household

members, available in the Infutor data, to infer individuals’ race.

Local government finances. To account for the fiscal effects of new construction, we gather
data on local governments’ finances. The Census of Governments tracks the revenue and
spending of states, counties, municipalities, school districts and special districts, as well as the

intergovernmental transfers between these entities. Most special districts and school districts
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serve a single municipality. We map these specialized local governments to the municipalities

they cover, and aggregate local governments’ revenue and expenditure to the municipal level.

5 Model Estimation

The granular datasets we have assembled on migration history, housing units, and neighbor-
hood and municipal characteristics allow us to estimate a rich model of household location
choice. We describe how our empirical strategy isolates quasi-random variation for key pa-
rameters, and then we present the estimation steps for matching moments in the model to the
data.

5.1 Evidence from a border design

We first illustrate the sources of variation that contribute to estimating some of the parameters
in the utility function. This variation leverages differences in housing regulation across munic-
ipal borders, which in turn affects various neighborhood characteristics that households have
preferences over. These preferences appear through shifts in home prices at the borders that
empirically indicate how neighborhood features shape housing demand. We exploit our rich
dataset on land use regulations to extend the findings of previous studies that also employ the

border design in their empirical approach (Song, 2021; Gyourko and McCulloch, 2024).

Border discontinuities. For this design, we focus on areas within a 500-meter radius of the
boundaries that separate municipalities after removing sections that are near more than two
municipal jurisdictions (see Appendix Figure C.1 for an illustration). Required for identification
of the effects of differences by the border, we assume that unobserved location characteristics
such as natural amenities and market access are smooth across the border. However, other
neighborhood characteristics, which we aim to study, such as regulation and endogenous
amenities of demographics or density, discontinuously change.

We start by measuring the impact of regulation on some of the channels that rationalize

restricting housing supply in the border discontinuity specification below:

Y, = 5b(i) +B D; + 1 dist; + ’)/2( D; x diSti) +&;
~—
Boundary FE
When the treatment is regulatory restrictiveness, the treated side (D; = 1) of the border is the
municipality with more stringent regulations, and the other side is the one with less stringent
regulations. Stringency is classified by aggregating over several dimensions of regulatory

restrictiveness (share SF and the municipal median value for: minimum lot area, front yard
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setbacks, maximum height, and maximum lot coverage). We include boundary fixed effects to

account for differences across municipal comparisons that are correlated with zoning.

Figure 3: Regulation stringency affects characteristics by municipal border
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Notes: Observations are housing units from CoreLogic. A single-family zone is defined as a zone that allows single-
family dwellings, but not two-family or multifamily dwellings. The share of single-family homes is measured by
census block, median household income is measured by census block group, and property tax rate is measured
at the municipal level. Home prices in panel (d) are measured by housing units (limited to only SF) and quality-
adjusted for the housing characteristics: number of bedrooms, number of bathrooms, age of home, log of floorspace,
and log of lot area.

In Figure 3(a), we show how the more stringent municipality requires a greater share of

homes to be zoned for single-family housing. As a consequence of these regulations, Figures 3(b)
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and 3(c) depict how the median household income (a demographic characteristic correlated with
other amenities such as public schools) is higher, and property tax rates are lower. Mechanically,
the tax rate should be reduced since zoning forces homes to be larger in size and priced higher
per unit. Additionally, home values rise because demand for these locations increases from the
improved amenities/lower taxation.

This greater demand is reflected in the quality-adjusted home values, shown in Figure 3(d),
where the running variable is household income, rather than regulatory stringency, to measure
how preferences for higher income neighbors appear in prices. Adjusting for characteristics
such as number of bedrooms/bathrooms and floorspace eliminates the portion of prices that is
mechanically higher due to how zoning affects the size of the home.

In addition to the increase in home prices when entering the more stringent municipality,
home values also slope upwards on both sides, and the discontinuity at the border is fuzzy
rather than sharp. The gradual change in home prices may reflect how exposure to high-income
neighbors is also gradual, since immediately on the higher-income side, homes are still exposed
to neighbors on the lower-income side. Likewise, homes on the lower-income side near the
border are exposed to neighbors on the higher-income side. In our next specification, we

leverage this variation from areas adjacent to the border.

Valuation of local and municipal characteristics. While the border discontinuity design pro-
vides evidence on the valuation of municipal characteristics, it is also informative for under-
standing preferences for hyper-local characteristics. Demand for homes immediately by the
boundaries is affected by their exposure to the other side within a narrow radius. We capture
this local variation in the following hedonic regression of prices on municipal characteristics
and local exposure, calculated as the average of neighborhood characteristics within a 500-meter
radius. The sample is limited to housing units within 500 meters of each border, and border

tixed effects absorb differences in levels across municipal comparisons.

. _ local ylocal muni ymuni unit .
log (price;) = ;) + B X + BXUA + X e
~~ ~ ~N"~ ‘\/_/
Border FE Local exposure  Municipal chars  Controls

In this equation, X contains the variables of average household income, share white, and density
(units per acre) at both the local and municipal level. These characteristics are standardized to
allow for comparison of the magnitudes of the coefficients. We include quality controls for the
housing unit in X", so the outcome variable of price represents how demand changes as a
result of neighborhood and municipality features rather than the characteristics of the house,
which may be changing due to regulations correlated with local demographics and density.
Using the discontinuity in demographics and density at the border, which further shifts local

exposure, we find in Table 1 that home values respond more to racial composition, i.e., share
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white compared to average income for hyper-local exposure. Yet, for municipal characteristics,
average income is valued more than racial composition since income level may more strongly
determine public goods and services provided by the jurisdiction. In this hedonic regression, we
do not find that housing demand is affected by density, i.e., units per acre. This last finding is
somewhat similar to that of Gyourko and McCulloch (2024) as they show how, after controlling

for demographics, the distaste for density is lowered.

Table 1: Preferences for demographics & density using border exposure design

(log) Home price

Local exposure (within 500m)

Average household income 0.040***  (0.009)
Share white 0.101***  (0.011)
Units per acre -0.013  (0.010)
Municipal characteristics

Average household income 0.059***  (0.010)

Share white 0.030**  (0.009)
Units per acre -0.013  (0.010)
Boundary FE v
Observations 342,637

Notes: For local exposure, average household income is at the census block group level, share white is at the block
level, and units per acre is at the block level. Home prices are quality-adjusted for the features: number of bedroom:s,
number of bathrooms, age of home, log of floorspace, and log of lot area.

Now that we have presented where the empirical variation is derived from, we return to the

model set-up laid out in Section 3.2 and describe the steps to infer model parameters.

5.2 Estimation procedure

We estimate the model using a two-step procedure similar to that of Bayer et al. (2007). The
first step uses individual location choices to measure heterogeneity in household preferences.
The second step recovers unobservable amenities associated with each housing unit, using
an instrumental variables strategy to account for the correlation between these unobservable

characteristics and home prices.

Step 1: Taste heterogeneity and mean utilities. For estimation, it is convenient to collect all
components of u;;(j — k) that are common across households for a given unit-time pair (k, t)

into a mean utility
Okt = &g X = v0 (Hi(K)) + G (12)

where H(k) = (1 — O)Ry; + Ty is the component of housing costs that is common across

households. (i captures unobserved amenities. We then write the individual component of
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utility that is related to location choice,
T = (Azyp) ' Xy — (v " zi) His (k) — 0 (rAi) — pi(j—k), (13)
Utility can then be formulated as the sum of common and individual-specific components
Witk = Ot & Yieli + ir + itk (14)
and migration probabilities are given by

exp (Ot + i)
Yorep exp (e + i)

Py(j—k) = (15)
Let 6; denote the parameters in A, 7, and in the moving-cost specification p;;(-). The first-step
estimator maximizes the log-likelihood

L(01,{04}) = Y log Palji1—KiP*), (16)

it

jointly over 61 and the vector {dy; }.

Step 2: Mean Preferences. In the second step we decompose the estimated mean utilities into
observables and unobservables:

o = B Xie — AH(k) + mppy + Tk (17)

where  recovers mean preferences for amenities, A is the mean marginal utility of money, 77 )
are boundary fixed effects, and (j; absorbs ¢; and any remaining shocks. The boundary fixed
effects implement a municipal boundary discontinuity design.

Because the endogenous variables of amenities Xy; and the cost of housing H;(k) are equi-
librium outcomes that generally covary with the unobserved component (;; in (17), we estimate
(17) using instrumental variables. We discuss the instruments for Xj; and H;(k) in sequence and

how they address bias due to correlation with the error term.

Instruments for location characteristics. Recall that X;; contains both unit and location char-

acteristics [X‘kmit; X}Scaﬁor‘}. We leave the time-invariant unit characteristics X{™* as controls,

and focus on the time-varying, endogenous location features in X}0", Following the findings

from the boundary exposure design, these features can be divided into local exposure X}cotcal

it Variation for estimation derives from local exposure to

and municipal characteristics
discontinuities across municipal borders and municipal-level shocks in characteristics.

In the border design, we focus on areas within a narrow band where we assume unobserved
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natural amenities that are neighborhood-specific (such as availability of lakes) are the same
and thus do not bias the estimation of . However, an identification concern with employing
border discontinuities is that unobserved municipal amenities may also change sharply at the
border. For example, higher-income municipalities often exhibit better governance because
high-income households choose well-managed jurisdictions, which importantly implies the
correlation between income and governance need not reflect a causal effect of income on
governance. Without an instrument, our estimated coefficient for the preferences for municipal
average income may also contain the preference for good governance.

To address this omitted variables bias, we construct instruments from a combination of
sources. For local exposure, the full set of zoning regulations can be used as shifters of municipal
traits that affect the bordering neighborhoods outside of the municipality. Because zoning is
endogenous to unobserved municipal characteristics, we include border fixed effects to absorb
the level differences across municipalities. The instruments operate through how the relative
difference in regulation across municipalities changes the relative difference in population
characteristics.

Importantly, we need more than a single instrument as we have several characteristics in
Xlocation g;ch as income, racial composition, and density. Let r denote the type of regulation,
such as minimum lot size, share zoned SF, floorspace, etc. For each unit k, define D}, € {0,1}
where D; = 1 if k is on the side that is more stringent. Define the difference in stringency

between one side and the other side as SZ(k)' We instrument the local exposure measure X}gcal

using the vector Z,l(Ocal = {exposurek (DZSZ(k)) }r which is calculated as the 500 meter radius of
exposure to the vector of municipal regulatory jumps at the border. The various dimensions of
regulation provide variation to separately shift the multiple characteristics of income, race, and
density if, for example, height restrictions target density, minimum lot size targets income, and
share zoned SF targets race (through the wealth channel).

However, municipal differences in housing regulations cannot be used as instruments for

muni gince the regulations may arise from unobserved municipal features such as local gov-
ernment capacity. Instead we construct Bartik-style municipal-level shocks Z™™ from the
interaction of national (leave-out) changes in population characteristics and the initial shares
in each municipality.

Our approach differs from the canonical border design study of Bayer et al. (2007), which
does not employ instruments in its estimation of preferences for demographics and instead relies
on the assumption that, after controlling for school quality, no differences in confounders across
municipalities remain. However, as noted earlier, public services and administrative capacity
are unobservable variables that can be correlated with demographics and may not be fully
absorbed by school quality. Additionally, without separate instruments for each characteristic of
income and race, the relative size of the coefficients can be affected by which variable has more

measurement error.
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Instruments for housing prices. For the costs of housing C;(k), we construct two instruments
following Bayer et al. (2007) to address how home prices are affected by unobserved character-
istics. The first is “far-ring” characteristics (shares of land use and characteristics of the housing
stock in concentric rings 3-10 miles around k) Zf* that shift prices through market competition.
The estimating equation requires the inclusion of a rich set of “near-ring” controls Z;**" defined
analogously to the far-ring instruments at 1-3 miles from k, the municipal-boundary fixed effects
1p(k), and the other observables Xj;. The near-ring controls address unobservable common shocks
that covary with both unit k and the far-ring instruments. Conditional on these variables, the
exclusion restriction is that the far-ring instruments only affect utility through the price channel.

The second instrument for prices is a model—predicted market—clearing user—cost, ﬁkTC, obtained
by solving the model for the price vector that clears markets when the unobserved choice
component is set to zero ({y = 0), holding fixed the first-step preference estimates and the
exogenous characteristics of locations. Hk’fc also satisfies the exclusion restriction once we
condition on Xj;, near—ring controls, and #,(x) because it is a function only of exogenous spatial
features (in particular, far-ring features) and the first-step parameters.

Identification requires: (i) smoothness of housing and neighborhood characteristics within
municipal-boundary bands (so that 1) absorb slow—moving unobservables at the boundary);
(ii) that near-ring characteristics capture the local neighborhood attributes that enter utility; and
(iii) that far-ring characteristics shift equilibrium prices but, conditional on (i)-(ii), do not affect
utility directly. The construction of ﬁk”fc concentrates the information in the far-ring variables

into a single instrument.

Estimating equations. Estimation of parameters (, ) happens simultaneously, so for the two

endogenous variables, the first stage equations are then

Xll((;cation — lerrirqluni + ‘PZZ]lcocal +w I:jch + Ql ZIEE;I' + QZ Z]I{ltear + Ub(k) + wunitX]Lcmit + gkt
Hi(k) = @1Zp"™ + $220% + 7w HJJC + Ty ZET + T ZE + ) + Tunite XE™F + v (18)

where the excluded instruments are (Z%‘mi, Z,lcocal, HS, Z]fjt‘r) and the included controls are
(Z5, Mg ™).

We then estimate (17) by 2SLS using the fitted values }A(,l{‘zcati"”, H;(k) from (18) and the
included controls. These values deliver mean preference parameters ( B, A). Given the first-step
estimates of A and of the parameters inside 7(-), the implied distribution of marginal willingness
to pay (MWTP) for component m of Xy; across households with characteristics z is

_ Bmt (Amz)

MWTP,,(z) = O (19)
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5.3 Building counterfactuals

With the estimated model in hand, we first consider the initial (#() allocation of households across
housing units, measured in 2020. Assuming that amenity levels B(z), rents R, and taxes T are
at their steady-state levels, we compute the migration probability matrix P(z). This matrix
is a function of household demographics to the extent that location amenities and migration
costs vary with demographics. This matrix, along with households’ initial location, allows us to
compute each household’s probability 7%, of being in any housing unit in subsequent years.

We then compute in the model the effect of building an additional housing unit with given
characteristics (location, type, size, and tenure) on P, and on amenities, prices, and taxes in
the first post-treatment period, t;. We use these effects as an approximation of the permanent
shocks AB, AR, AT, and Arr; included in the computation of welfare effects. To validate this
approximation, we show in simulations that the effects of construction on amenities, prices, and

taxes in the longer run are very close to the short-run effects.

5.4 Model validation against event study findings

With the model’s predictions for the impacts of building additional units on surrounding areas,
we then turn to event study specifications to measure how the predictions compare to the effects
of multifamily construction that took place in New Jersey. These comparisons validate whether
the parameterization of the model is consistent with un-targeted moments in the data.

We estimate dynamic treatment effects of nearby multifamily construction on single-family
home values using a staggered difference-in-differences (DiD) design following de Chaisemartin
and D'Haultfceuille (2024). This event-study specification captures the evolution of outcomes
before and after the onset of nearby construction activity. Appendix Figure C.2 shows an
example of a construction event we exploit. The sample is restricted to single-family homes that
are eventually treated, i.e., those located within 500 meters of a multifamily construction event
at some point during the study period. Identification relies on variation in treatment timing
rather than cross-sectional differences between treated and untreated locations. We estimate the

following empirical specification:

log (price;;) = a; + Ar + Z px 1{EventTime;; = k} + ¢4,
kA1

where log (price;,) is the transacted sales price for home i in year ¢, a; and A; are home and year
fixed effects, and 1{EventTime; = k} is an indicator for being k years relative to the start of
nearby multifamily construction (with k = —1 omitted as the reference period). The coefficients
Pk trace the dynamic effects of treatment.

We further examine heterogeneity in treatment effects by estimating the same event-study
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specification separately for neighborhoods of differing income levels. Specifically, we split the
sample into low-income and high-income neighborhoods, defined as those in the bottom and
top halves of the distribution of neighborhood median household income. The results across
types of neighborhoods are shown in Figure 4.°

In our model framework, heterogeneity in households” preference parameters within the
location-choice model implies that multifamily construction should generate differential
changes in housing demand across neighborhoods.  The magnitude of the empirical
heterogeneity we observe in the event-study estimates should align with the magnitude
of demand heterogeneity implied by the model-based predictions.

Figure 4: Multifamily construction affects home values in high-income neighborhoods
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Notes: Home prices are quality-adjusted for the features: number of bedrooms, number of bathrooms, age of home,
log of floorspace, and log of lot area. Treatment is defined as a multifamily construction event where at least 10
units are built within 500 meters of the single-family home. Income of the neighborhood is defined at the block
group level, and high/low-income categories are designated as the top/bottom half of the neighborhood income
distribution.

6 Conclusion

The rate at which new dwellings are being added to the housing stock has been declining
precipitously in the United States since the Second World War (Glaeser and Gyourko, 2025).
This slowdown is widely attributed to stringent land use regulations that restrict increases in
housing supply and reflect political opposition from incumbent residents, who may lose from
new construction through adverse shifts in prices, amenities, or local taxes.

We develop a unified framework to measure the distributional effects from new housing con-

struction, both in the immediate vicinity of new development and in more distant locations. This

®Reassuringly, the adverse effects of multifamily construction we find are driven by large developments. Indeed,
the construction of multifamily structures with fewer than 10 housing units do not have a discernable effect on the
value of nearby single-family homes (see Appendix Figure C.3).
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framework exploits increasingly available microdata on household characteristics, migration,
housing units, and local governments. It is designed to clarify the reasons for which incumbent
residents of an area tend to oppose construction, and measure how new development affects
welfare across jurisdictions and household types.

The losses from new construction are likely concentrated in the neighborhood in which it
is taking place, while gains are much more diffusely distributed. This leads housing markets
to be particularly vulnerable to the formation of special interest groups who lobby against
development and institutional sclerosis (in the language of Olson, 1982). We hope to shed
light on the political economy forces that sustain restrictive land-use regulation, and better
understand which policies are likely to make new construction more politically palatable. More
broadly, our framework offers a template for evaluating the interjurisdictional consequences of
local policy, contributing to ongoing debates on the optimal scale of governance in urban policy.
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Appendix

A Data

A1 CoreLogic-HMDA matching

This Section describes how we infer the race and income of homeowners in CoreLogic by
matching their mortgage deed information to mortgage loans recorded by the Home Mortgage
Disclosure Act (HMDA), which documents the demographics of the borrower. As the public
version of HMDA does not disclose the exact address of the purchased home, we match on
Census tract. Since the borrowers are anonymized, we fuzzy match on other identifiers such
as transaction date, loaned amount, loan type, and lender name. Below, we describe the data
cleaning process for the two datasets that are merged and the algorithm for matching. The

match results are presented at the end.

Pre-processing of HMDA data. We construct the HMDA dataset used for matching from
public HMDA data on loan originations covering 2007 to 2023. We keep only loans that
were originated and drop loans with missing Census tract information. We also restricted
income values below $10,000 or above $15 million to remove outliers. We applied lender name
standardization to remove corporate suffixes and standardized common abbreviations. For
example, all mentions and variations of the terms “LLC”, “corporation”, "NA”, and “"LTD”
were removed. Abbreviations such as "BK”, "SVGS”, and "MTG” were expanded to “bank”,
”savings”, and “mortgage”, respectively. After all of these steps, we only keep observations
uniquely identified by the combination of year, lender name, census tract, loan amount, loan
purpose, loan type, and co-applicant sex. This resulted in 3,777,663 HMDA loans eligible for

matching.

Pre-processing of CoreLogic data. We construct the CoreLogic dataset used for matching
to match the HMDA dataset as closely as possible. To this end, we apply lender name
standardization to remove all variations of corporate suffixes and unabbreviated terms. The
CoreLogic data had many more uncommon abbreviations (e.g. “INVS” for “investment”,
"SVCNG” for "servicing”, "HSNG” for “housing”, etc.) which we unabbreviated. As a next
step, we dropped mortgages that belonged to corporate borrowers, and removed non-residential
properties (e.g. agriculture, commercial, etc.) in line with reporting standards in HMDA. We also
dropped HUD-originated loans as they are not included in HMDA. This resulted in 4,658,294
loans from CoreLogic eligible for matching. For dating the mortgage, we used the mortgage
date if available, and if not, then the mortgage recording date, and finally the transaction batch

date if other date variables were missing. Addresses were matched to Census tracts based on
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the HMDA schedule of tract adoptions. This means for mortgages from 2007-2011, the 2000
Census tract matching was used. For 2012 - 2021, mortgages were matched using the 2010
Census mapping, and finally for 2022 - 2023, the 2020 Census tract mapping was used. We
created a co-applicant indicator that equals 1 if the second borrower name field was not empty
or if the borrower et al code indicated multiple borrowers. We also standardized CoreLogic
loan amounts to match public HMDA reporting conventions. This entailed rounding mortgage
amounts to the nearest $1,000 for loans before 2018. For 2018 onwards, mortgages under $10,000
were rounded to the midpoint of the nearest thousand dollars. Mortgages over $10,000 were
rounded to the nearest $5000 (the midpoint of the $10,000 bins).

Matching algorithm. The matching algorithm closely follows Bayer et al. (2017). The variables
used for matching are year, Census tract, loan amount, lender name, loan type, loan purpose,
and presence of a co-applicant. There are seven rounds of matching which progressively relax
matching criteria. Year and Census tract are required to match exactly in each round. In rounds
1 through 4, lender name is matched with a fuzzy matching command from the fuzzywuzzy
package in Python. In the first round, an exact match is required on each variable. In the second
round, we relax the co-applicant requirement. In the third round, the co-applicant requirement
is reinstated and loan type requirement is relaxed. In the fourth round, co-applicant, loan type,
and loan purpose requirements are relaxed. Round 5 requires an exact match on all variables
except it employs a Soundex matching function from the jellyfish package in Python rather
than fuzzy matching for the lender name. Round 6 utilizes Soundex matching and relaxes the
loan type, purpose, and co-applicant criteria. The final round uses fuzzy matching on lender
name and requires matching on all variables except co-applicant. In this round, the loan amount
criteria is relaxed to allow matches for loans in a band of +/- $2,000 for loans originated before
2018 and +/- $5,000 for loans after 2018. Additionally, in the rare case of one to many matches
in which one CoreLogic loan matches to multiple HMDA candidates, this is counted as a match
if the race in HMDA is the same and the incomes in HMDA fall within a $10,000 band. In that
case, the match is made and the mean of the incomes is used. In sum, the iterative matching
process results in a match rate of 62.56%. The bulk of these matches are completed in rounds 1

and 2, which is consistent with prior literature.

Matching results. Out of our sample of CoreLogic loans which contains 4,658,294 mortgage
originations, the algorithm was successful in matching 2,914,011 loans (62.56%) to HMDA
records. Of these matches, 1,383,337 (29.70%) were found in Round 1 with exact matches on all
variables. Round 2 yielded a further 971,389 (20.85%). Round 3 and 4 found 23,645 (0.51%) and
271,376 matches (5.83%), respectively. Round 5 yielded a match rate of 102,142 matches (2.19%)
using Soundex matching, while Round 6 identified 113,559 matches (2.44%) with Soundex and
relaxed requirements. Finally, Round 7 found 48,563 matches (1.04%).
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A.2 Local government finances

Overview of the Census of Governments. The Census Bureau conducts the Census of Gov-
ernments every five years. We extract data on local governments’ finances from the 2017 census,
which documents the revenues and expenditures of the state’s 21 counties and 565 municipalities
(which can be cities, boroughs, townships, towns, or Villages).7 It also describes the finances of
529 school districts and 223 special districts.

School districts. Education is the most important local public expenditure in New Jersey (see
Appendix Figure B.1). In 2024, there were 687 public school districts in New Jersey. Not all
are included in the Census of Governments, as school districts do not all act as independent
governments. Some school districts” finances are fully controlled by another local government
(typically, a municipality). These school districts” revenues and expenditures are consolidated
with those of the parent government in the Census of Governments.

We have associated the 529 school districts in the Census of Governments with the munic-
ipalities they serve. Some school districts (often providing secondary education) cover several
municipalities. For instance, the Buena Regional School District covers both Buena Borough and
Buena Vista Township. The vast majority (82%) of school districts, however, are associated with

a single municipality, and the average school district serves 1.4 municipalities.

Special districts. Special districts are independent, local units of government created for a
specific, limited purpose. Fire districts are the most common special districts in New Jersey (71%
of the total), followed by transportation (9%), sewerage (8%), soil conservation (7%), utilities
(4%), and water districts (1%). Although there are many special districts, they only account for
a residual fraction of local governments’ total spending (see Appendix Figure B.1).

These districts vary widely in the number of municipalities they cover. Fire districts over-
whelmingly cover a single municipality, while soil conservation districts cover one or more

counties.

Consolidation of municipal finances. In our analysis, we aggregate local governments’ rev-
enues and spending to the municipal level, as most public goods are provided by municipalities
or other local governments that only serve a single municipality. We distribute the revenue and
expenditures of counties and special districts to the municipalities they cover, proportionally to
population. Similarly, we distribute the revenue and expenditures of school districts proportion-

ally to the population below the age of 18 in the municipalities they serve.

’The number of municipalities in New Jersey decreased by one between 2017 and today due to a merger. In 2021,
the Borough of Pine Valley (population 13) was absorbed by the adjacent Borough of Pine Hill (population approx.
10,700).
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Additional local public finance data. We obtained municipality-level estimates of the average
effective property tax rate (the total annual property tax as a fraction of market value) from the

New Jersey Division of Taxation.

A.3 Additional data sources

School test scores. To measure local school quality, we used 4th-grade English Language Arts
(ELA) and math scores from the 2019 New Jersey Student Learning Assessments (NJSLA),
obtained from the state’s Department of Education. We first calculated an overall score for
each school district by averaging its standardized ELA and math results. We then aggregate
these scores at the municipal level by calculating an average of the scores of its school districts,

weighted by enrollment.
Tree canopy cover. We gather data on tree canopy cover in 2019 from the Forest Service-Field

Services & Innovation Center. Its CONUS dataset, built using satellite imagery, documents the

tree canopy cover at a 30-meter resolution.
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B Descriptive Statistics
B.1 Local public finances

Figure B.1: Local government expenditures

(a) By government level (b) By expenditure category
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Notes: This Figure describes local governments’ direct expenditures. Panel (a) shows the share of local governments’
expenditures associated with each government level (county, municipality, special district, and school district).
Panel (b) shows how expenditures are distributed across spending categories.
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Figure B.2: Local government revenue
(a) Revenue sources (b) By average household income quintile
207
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107

Revenue per household ($1000)

Q1 Q2 Q3 Q4 Q5

Income quintile

B Property tax M Net intergovernmental transfers B8l Other

Notes: This figure describes the origin of local governments’ revenue, both in aggregate for the entire state of New
Jersey (panel a), and by income quintile (panel b). To build this figure, we aggregate the total revenue from property
taxes, net government transfers, and other sources for counties, municipalities, special districts and school districts.
In panel (b), we consolidate municipal finances by allocating counties’, special districts’, and school districts’
revenue to the municipalities they cover, proportionally to population. We then split municipalities in quintiles
of their average household income.

Figure B.3: Limited economies of scale in the provision of schooling
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Notes: This figure shows, for the school districts included in the Census of Governments, the average yearly
expenditure per enrolled student as a function of the district’s total enrollment. The overlayed histogram shows
the distribution of enrollment across school districts. The average school district has about 2,100 students.
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B.2 Zoning

Figure B.4: Zoneomics coverage

(a) Contiguous United States (b) New Jersey

Notes: This figure maps the jurisdictions for which Zoneomics zoning data is available, both for the contiguous
United States (panel a) and New Jersey (panel b).

Figure B.5: Zoned land uses
(a) Nationwide (b) New Jersey

I Agricultural BN Commercial BB Industrial Mixed-use HEEE Other BN Residential

Notes: This figure shows the share of land zoned for different uses across the United States (panel a) and in New
Jersey (panel b). “Other” includes protected or conservation areas, parks, government buildings, and other special-
purpose zones, such as cemeteries and recreational facilities.
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Figure B.6: Share of land zoned for low-density use across municipalities
(a) Nationwide
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Notes: This figure shows the distribution of the share of residential land zoned for low-density use across
municipalities in the United States (panel a) and New Jersey (panel b). Panel ¢ compares the share of residential
land zoned for low- versus high-density use in the United States and New Jersey. “Low-density” refers to structures
accommodating up to two families, including single-family homes, ADU’s, and duplexes. “High-density” refers to
structures accommodating more than two families.
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Density

Density

Figure B.7: Stringency of zoning regulations
(a) Minimum lot size
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Mean: 0.8, Median: 0.5, SD: 0.7
Variance: 40.8% between metros, 38.5% between municipalities within metros, 20.6% within municipalities

(b) Maximum building height
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(continued)
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(c) Minimum setback
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Notes: This figure shows the area-weighted distribution of the stringency of various zoning regulations across zones
in the Zoneomics data. Panel (a) shows the distribution of minimum lot sizes, panel (b) shows the distribution of
maximum building heights, panel (c) show the distribution of minimum setbacks (computed as the maximum of the
required front yard, side yard, and back yard setbacks), and panel (d) shows the distribution of maximum densities
(caps on the number of dwelling units per acre). For each regulation, we indicate the share of municipalities using
it in its zoning code, the share of land subject to it, the area-weighted mean, median, and standard deviation of the
regulation stringency. We also show the share of total variance attributable to differences beween CBSAs, differences
between municipalities within the same CBSA, and differences between municipalities.
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Figure B.8: Relationship between zoning and demographics
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Notes: This figure reports OLS estimates and 90% confidence intervals of the effect of a one standard deviation
increase in zoning stringency on demographic outcomes (also expressed in standard deviations). Each estimate
corresponds to a different regression where we control for CBSA fixed effects and cluster standard errors at the
municipality level. We define the minimum setback requirement as the maximum of a zone’s front, rear, and
side yard minimum setbacks. Maximum building height and allowable density are multiplied by -1 so that
greater values indicate greater regulatory stringency. The zoning stringency index is a composite of the other four
regulations, calculated for each zone as the standardized mean of their individual standardized values.

Figure B.9: Zoning stringency across CBSAs
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Notes: This figure maps the share of residential land zoned for non-multifamily uses across CBSAs. CBSAs for
which the zoning data covers less than 50% of the CBSA’s population are labeled “Insufficient Data”.
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B.3 Household sorting

Table B.1: Demographics of households in single-family vs. multifamily housing

(1) () 3) (4) (5) (6)
(log) HH  White College (log) Home (log) Rent (log) Prop.
income value taxes

Panel A: Nationwide

Multifamily ~ -0.690*** -0.142"** -0.069***  -0.203***  -0.263***  -0.158***
(0.001)  (0.000)  (0.001) (0.002) (0.001) (0.002)

Observations 5,605,208 5,671,001 5,671,001 3,994,343 1,579,496 3,860,480

PUMA FE v v v v v v
Panel B: New Jersey
(1) () 3) (4) (5) (6)
(log) HH  White College (log) Home (log) Rent (log) Prop.
income value taxes

Multifamily ~ -0.716*** -0.143"** -0.115***  -0.448"*  -0.349***  -0.295***
(0.006)  (0.003)  (0.003) (0.008) (0.007) (0.006)

Observations 155904 157,360 157,360 111,355 44,315 109,615

PUMA FE v v v v v v

Notes: This table shows regressions of household characteristics on a dummy indicating residence in a multifamily
dwelling and Public Use Microdata Area (PUMA) fixed effects. This regression leverages microdata from the 2020
5-year ACS for the entire United States (top panel) and for New Jersey (bottom panel).
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C Additional Figures

Figure C.1: Border areas in Middlesex County

Notes: This figure shows the areas within 500 meters of a municipal boundary in Middlesex County, NJ.

Figure C.2: Example of a multifamily construction event
(a) 2007 ‘ (b) 2015

Notes: This figure illustrates one of the multifamily housing construction events we consider in the empirical design
of Section 5.4. Panel (a) (resp., b) shows a 2007 (resp., 2015) satellite view of 1 Overlook Drive in Monroe Township,
where a large multifamily structure was built in 2009.
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Figure C.3: Effects of multifamily construction on nearby home values: Additional results

(a) Full sample (b) Small developments
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Notes: This figure shows additional results from the event study design we describe in Section 5.4, measuring the
effect of new multifamily construction on the value of nearby single-family homes. Panel (a) shows the effects
measured using the full sample of construction events, and panel (b) shows effects when restricting the sample to
small developments, defined as those with fewer than 10 housing units.
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D Estimation

Sampled alternatives

This appendix documents an acceleration of the computation of likelihoods in equation (15)
based on sampled alternatives. The baseline estimation described in the main text uses the full
set of housing units as the choice set for every household and period. When computational
constraints make the full choice set infeasible, it is standard to replace the (very large) set of
nonchosen alternatives by a random sample of size C for each observation, always retaining
the chosen alternative. Under random sampling independent of utilities, the MLE for the taste
parameters remains consistent as N — oo even with fixed C. Asymptotic arguments and
implementation details are provided in the Technical Appendix of Bayer et al. (2007), which

relies on McFadden’s (1978) “sampled choice set” results.

Construction. For each (i, t):

1. Include the chosen unit kgbs.

2. Draw C units without replacement from H \ {k$?*} according to a fixed sampling scheme

(e.g., uniform within market t, or stratified by distance bands).

3. Form the working choice set H}™ = {k$>s} U {the C draws}.

Likelihood with sampling correction. Let 715, denote the sampling probability for unit k in
period t. The logit likelihood with sampled alternatives uses the weighted utilities v, = u;y —
log 7s; equivalently, add — log 7ty to Jy; in the sampled likelihood. The resulting weighted
exogenous sampling MLE preserves the probability ratios that identify the taste parameters,

ensuring consistency. In practice:

exp (5kt — IOg Tkt + ﬁitk)
Zfe’}—[:f;’rk eXp (5£t — log 7'[&» + ﬁltg) !

L0, {8u}) = Y log i1 k™). (D2)
it

Pi(j—k) = (D.1)

Updating {J;} by contraction within the sampled sets reproduces the same fixed point condi-

tions as in the full set, up to the known sampling offsets — log 77;.

44



	1 Introduction
	2 Rationales for Restricting Housing Supply
	2.1 How does new construction affect welfare?
	2.2 Protecting incumbent residents through zoning

	3 Theoretical Framework
	3.1 The welfare effects of housing construction
	3.2 Household location choices

	4 Data and Context
	5 Model Estimation
	5.1 Evidence from a border design
	5.2 Estimation procedure
	5.3 Building counterfactuals
	5.4 Model validation against event study findings

	6 Conclusion
	A Data
	A.1 CoreLogic-HMDA matching
	A.2 Local government finances
	A.3 Additional data sources

	B Descriptive Statistics
	B.1 Local public finances
	B.2 Zoning
	B.3 Household sorting

	C Additional Figures
	D Estimation

