
Ambient Density and Urban Crime:

Evidence from Smartphone Data*
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The first thing to understand is that the public peace — the sidewalk and street peace — of

cities is not kept primarily by the police, necessary as police are. [It is] enforced by the people

themselves.
— Jane Jacobs, The Death and Life of Great American Cities, 1961

1 Introduction

Public safety is one of the most valued urban amenities. Survey evidence suggests that it matters

more for urban dwellers than other important amenities, such as the proximity to good schools,

restaurants, and stores (see Figure 1). As with many other urban amenities, public safety is en-

dogenous and can be affected by policy. In particular, an extensive literature shows how local

criminal activity is affected by police presence (see, e.g., Di Tella and Schargrodsky, 2004; Klick

and Tabarrok, 2005; Draca et al., 2011). However, as Jane Jacobs suggests in her acclaimed Death

and Life of Great American Cities, policing in cities is largely undertaken by ordinary citizens who

can witness and report crimes. Whether a neighborhood is safe at a given time depends on how

busy it is.

Figure 1: Survey — What are the main reasons why you chose your current neighborhood?
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Share who mentioned

Good schools
Quality of built/natural environment

Public transport
Close to restaurants/stores/cultural amenities

Safety
Grew up in the neighborhood

Close to countryside/green space
Size/type of housing

Close to work
Close to family/friends

Affordable cost

Notes: Results of a 2015 YouGov survey of 2080 residents in Great Britain, who were asked for the three main reasons
for which they chose to live in their neighborhood.

In this paper, we investigate the effect of ambient density — the number of people in a given

area at a given time — on urban crime, using Chicago as a case study. This question is not new;

it is, in fact, a key component of most prominent theories of urban crime.1 All emphasize that
1Routine activity theory suggests that crimes happen when a likely offender meets a suitable target in the absence
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increasing the activity of a neighborhood may favor crime by making it more likely that a po-

tential criminal finds a target, but it may also deter crime through natural surveillance. Whether

ambient density is, on net, associated with positive or negative externalities in terms of public

safety is theoretically ambiguous and calls for empirical investigation.

Such investigation has been hindered in the past by two difficulties. The first one is measure-

ment: while administrative data can provide information on the location of police officers, it is

much more challenging to track ordinary citizens. Therefore, it has been historically difficult to

precisely measure both ambient density and victimization rates — the probability that a person

in a given neighborhood will be a victim of a crime at a given time. The second difficulty is causal

identification: ambient density is endogenous, and we can expect people to avoid some neigh-

borhoods at times when they are perceived to be unsafe. Therefore, even with precise measures

of ambient density and victimization rates, correlational evidence relating these two variables

would be of limited interest.

To overcome these empirical challenges, we use smartphone data from a panel corresponding

to about 10% of the US population, covering 25 months between January 2018 and January 2020.

This data allows us to build a high-frequency measure of ambient density at a high spatial res-

olution. Unsurprisingly, neighborhoods can witness considerable shifts in ambient density over

time. In the Loop, the main section of Chicago’s downtown, we find that the ambient density is

more than four times higher at noon than at midnight on a regular weekday and more than three

times higher during weekdays compared to weekends.

We combine these measures of ambient density with detailed data on crime from the Chicago

Police Department (CPD), containing precise information on the timing and location of crimes.

For different neighborhoods and times of the day, we compute victimization rates by dividing the

number of crimes that took place in a neighborhood during an hour by the ambient population of

that neighborhood at that time. The wide variation in crime rates between neighborhoods is well

documented. With our data, we can further investigate variation in crime rates within neighbor-

hoods over time. We find that there is as much variation in crime rates within neighborhoods

over days of the week and hours of the day as between neighborhoods.

Our data further shows that about a third of those in Chicago during an average day do not

live within the city’s boundaries — rather, they come from the suburbs or further away. We use

data on the origin of visitors to Chicago to build a shift-share instrument for ambient density. For

instance, visitors to Chicago from the city’s suburbs come at different times of the year and of the

of a capable “guardian” (Cohen and Felson, 1979). Increasing the number of people in a neighborhood makes it more
likely that a potential criminal will meet a suitable victim but increases the number of capable guardians around
every potential victim. Environmental criminology studies how the built environment and land use affect foot traffic
and how it, in turn, affects crime (Jeffery, 1977). Crime pattern theory (Brantingham and Brantingham, 2013; Santos,
2016) considers that locations that attract many people are “crime generators”, as they concentrate many potential
victims.
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day than visitors from Michigan. Furthermore, visitors from the suburbs tend to go to different

areas of Chicago than those from Michigan. We build our shift-share instrument by combining

data on the number of visitors from different locations (shifts) and the typical areas in Chicago

that visitors from different origin locations choose to go to (shares).

Evidence from this instrumental variable strategy confirms the correlational evidence that we

document: increasing the number of people in a neighborhood increases the number of recorded

crimes but reduces victimization rates. Specifically, increasing the ambient density in a neigh-

borhood by 1% leads the victimization probability to drop by 0.37% for battery and assault, and

by 0.25% for robbery and street theft. The number of recorded crimes, however, increases by

0.63% and 0.75%, respectively. For comparison, the estimated elasticities of total crime to police

presence in the literature are between -0.3 and -0.5 (O’Flaherty and Sethi, 2015).

These IV estimates correspond to the effect of shifting the population affected by the instru-

ment. Therefore, they might not only reflect our main object of interest — the effect of increasing

density on the costs and benefits of committing a crime and, therefore, on the likelihood of a crime

— but also a composition effect. In the case of our visitor shift-share IV, the shifted population

is composed of visitors to Chicago. If visitors are more likely to be victimized or to engage in

criminal activity than locals, or if they exert a lower deterrence, then our IV estimates may not

reflect the effect of shifting the local population. We undertake two analyses to assess whether

composition effects drive our visitor shift-share IV estimates.

First, we control in our regressions for demographics in each neighborhood at a given time

(average income, average age, and the share of whites, all inferred from the home location of

smartphones). Controlling for these demographics barely changes our estimates of the effect of

ambient density on crime rates.

Second, we estimate the effects of ambient density on crime rates using a different source of

variation in ambient density. We retrieve data from the Chicago Transit Authority on temporary

closures of the city’s 122 “L” (short for “elevated”) rail stations for maintenance or upgrading

purposes. We find that station closures lead to a drop in density and increased victimization rates

in nearby neighborhoods. Using these temporary closures as an instrument for ambient density,

we find effects of ambient density on crime similar to those found using the shift-share IV.

Our two empirical strategies complement each other: the visitor shift-share IV provides vari-

ation over the entire city, while transit station closures only affect about 15% of Chicago’s neigh-

borhoods. However, while the shift-share IV relies on variation in the presence of a specific pop-

ulation (visitors to Chicago), the people shifted by transit closures are likely more representative

of the city’s general population. Furthermore, these identification strategies leverage variation in

ambient density at different time horizons: while the shift-share IV uses medium-run, seasonal

shifts in ambient population, our transit closure instrument leverages more short-run changes in

density.
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We relate our results to two current policy debates. First, many urban planners argue that

policies that spread out ambient density (for instance, favoring mixed-use neighborhoods over

single-use neighborhoods) are beneficial for public safety. Underlying these arguments is a belief

that there are decreasing returns to scale in the effectiveness of density in crime prevention —

adding a few people to a deserted street will make it safer, but adding people to a busy street will

have little effect. By estimating the effect of shifting ambient density separately for neighborhoods

with different average density levels, we find some evidence for decreasing returns to scale: the

beneficial effects of density are strongest in low-density and medium-density neighborhoods.

Second, we assess the potential impact of work-from-home on crime rates in different neigh-

borhoods of Chicago. Dingel and Neiman (2020) find that about 39% of jobs in the Chicago

metropolitan area could be performed from home. We predict the changes in ambient density that

would be observed if work-from-home were to become widespread and estimate corresponding

changes in crime rates. We find that work-from-home could increase violent crime rates in the

central neighborhoods of Chicago by 8%. Work-from-home is expected to cause large drops in

real estate prices in city cores (see, e.g., Gupta et al., 2022; Delventhal et al., 2022). Our results

suggest that work-from-home is likely to further strain the central neighborhoods of cities by

increasing crime rates there.

This paper makes several contributions to the existing literature. First, we provide new mea-

sures of criminal activity in cities. Using data on reported crimes, it is possible to estimate vic-

timization rates with a high temporal resolution (e.g., hour-by-hour) and a low spatial resolution

(e.g., at the metropolitan area level), or with a high spatial resolution (e.g., at the neighborhood

level), but a low temporal resolution (e.g., year-by-year). Our paper shows how smartphone data

can be leveraged to build measures of public safety with a high spatial and temporal resolution

over a long time period.2

More importantly, instead of using these time-varying measures of crime rates in a predic-

tion exercise to find their best correlates (as in, e.g., De Nadai et al., 2020; Bogomolov et al., 2014;

Hanaoka, 2018), we combine it with plausibly exogenous variation to measure the effect of ambi-

ent density on crime rates. This relates our paper to the literature on the determinants of criminal

2Past research in criminology has well recognized the problem of correctly measuring the denominator of crime
rates (see, e.g., Boggs, 1965) and has developed creative ways to measure ambient density: Malleson and Andresen
(2015) use data from geolocated Twitter posts, Andresen (2006) uses a prediction of ambient density using the char-
acteristics of each neighborhood, Kadar and Pletikosa (2018) use data from subway and taxi rides, Felson and Boivin
(2015) use transportation surveys. Several papers have used smartphone data to measure ambient density and vic-
timization rates but could only leverage data from a short period — from a day to a few weeks (Traunmueller et
al., 2014; Bogomolov et al., 2014; Malleson and Andresen, 2016; Song et al., 2019), use a low temporal resolution
(Massenkoff and Chalfin, 2022), or use a low spatial resolution (He et al., 2020). Other studies in economics have
shown how smartphone data can be used to measure variables that cannot be seen in traditional survey or adminis-
trative data, such as informal meetings (Atkin et al., 2022), trip chains (Miyauchi et al., 2022), voting wait times (Chen
et al., 2020), social interactions (Chen and Rohla, 2018), and wages in developing countries (Kreindler and Miyauchi,
2019).
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activity, such as air pollution (Herrnstadt et al., 2021); high temperatures (Heilmann et al., 2021);

population characteristics (Glaeser and Sacerdote, 1999); lead exposure (Reyes, 2007); social co-

hesion (Sampson et al., 1997); public transportation (Khanna et al., 2022); and land use (Bernasco

et al., 2013; Twinam, 2017). In particular, our results relate to the literature evaluating the effect of

“guardians” on criminal activity: be that police officers (Chalfin and McCrary, 2018), community

monitoring (McMillen et al., 2019; Gonzalez and Komisarow, 2020), or ordinary citizens (Jacobs,

1961).

Our findings also echoes recent literature showing that crime can be reduced at the city level

by changing where people work (Khanna et al., 2022; Frankenthal, 2024) or where people live

(Aliprantis and Hartley, 2015) within cities. Our evidence suggests that criminal activity can be

reduced by spreading where people go during the day.

The literature studying the determinants of crime typically relies on spatial regressions to

evaluate the effect of a treatment (e.g., the opening of a new transit station or bar) on crime,

measured as the number of crimes observed in a neighborhood (or the number of crimes per

resident) over a given period of time. In many cases, the treatment is likely to affect both criminal

behavior and ambient density. While researchers are mostly interested in the former effect, our

results show that changes in ambient density are likely an important confounder. Opening new

stores on a street is likely to increase the number of people passing through it and the number of

crimes recorded there, but a researcher should not necessarily conclude that stores make a street

less safe. Indeed, our results show that accounting for ambient density in measures of safety

would likely flip this result.

We further contribute to the literature studying the endogenous supply of urban amenities

(e.g., Ahlfeldt et al., 2015; Diamond, 2016; Couture and Handbury, 2017; Almagro and Domınguez-

Iino, 2022; Baum-Snow and Hartley, 2020). Here, instead of inferring overall amenity levels in

different neighborhoods from housing prices, we focus on a single amenity that can be directly

measured.

Finally, we relate to the literature on the economic effects of density (see Ahlfeldt and Pietroste-

fani, 2017, 2019, for a review). While past work has underscored the importance of population

and employment density in shaping local outcomes, we show evidence that ambient density also

affects neighborhood amenities.

The rest of this paper is organized as follows. Section 2 describes our data and stylized facts

about crime in Chicago. Section 3 details our empirical strategy and presents our main results.

Section 4 explores policy implications of our results, and Section 5 concludes.
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2 Data and Stylized Facts

2.1 Smartphone data and ambient density

Measuring ambient density. In this paper, we use the location data continuously sent by smart-

phones to measure the number of people in a neighborhood at a given point in time, which

we refer to as the ambient population of a neighborhood. We use proprietary data from Safe-

graph (specifically, the “Neighborhood Patterns” dataset), which aggregates pings from millions

of smartphones across the United States.

Data from Safegraph has been used and validated in several studies (e.g., Chen and Rohla,

2018; Atkin et al., 2022; Chen et al., 2020; Allcott et al., 2020; Weill et al., 2020). One difference

between the dataset we use and those used in many previous studies is that instead of focusing

on the number of smartphones detected at specific points of interest (e.g., stores, restaurants),

we have access to a measure of the number of people in a given neighborhood at a given time.

Specifically, Safegraph clusters smartphone pings to locate individuals at different points in time

and provides us with the number of ping clusters that have been detected in each of the 2,194

Census Block Groups (CBGs) of Chicago for each hour between January 2018 and January 2020.3

Importantly, pings coming from devices traveling at relatively high speeds (e.g., in cars or a train)

are filtered out, and we only measure the activity of people moving slowly (e.g., walking) or who

are static. Because the Safegraph data is aggregated at the CBG level, CBGs will be our spatial

unit of analysis throughout the paper. CBGs in Chicago are, on average, home to 1,200 inhabitants

and have a surface area of 0.3 sq. km (or 70 acres). In our analyses, we exclude CBGs with fewer

than 200 inhabitants, as ambient density is measured very noisily in these neighborhoods.

There are, on average, approximately 250,000 smartphones residing in Chicago in the Safe-

graph panel, which corresponds to a sampling rate of around 10%. We estimate the number of

people in a neighborhood at a given time by dividing the number of measured ping clusters by

the sampling rate.

Appendix Figure S.1 shows the average ambient density in different neighborhoods of Chicago

separately for weekdays and weekends. As expected, ambient density is highest around the CBD,

which is much more active on weekdays than on weekends.

Variation in ambient density. The density of people residing in a neighborhood (i.e., given

by the Census) only changes slowly over time, but ambient density can vary widely over short

periods of time. Figure 2 shows how ambient density evolved over a short period of time for three

CBGs in Chicago. Activity in the commercial neighborhood of River North and on the University

of Chicago campus is highest during weekdays, while the Museum Campus is more active during

3With 18,240 hours of data and 2,194 neighborhoods, this corresponds to about 40 million observations.
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weekends. There are also important changes in ambient density over a single day, with peaks in

ambient density during the day for commercial neighborhoods and at night in residential areas.

Figure 2: Hour-by-hour variation in ambient density in three Chicago neighborhoods
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Notes: This figure illustrates how ambient density varied in three Chicago CBGs, hour-by-hour between January 6,
2019 and January 16, 2019. River North is a neighborhood in the center of the city, with many shops and restaurants.
The Museum Campus is home to the Adler Planetarium, the Shedd Aquarium, and the Field Museum of Natural
History. Maps of these three example neighborhoods can be found in Appendix Figure S.2.

Data limitations and representativeness. Unfortunately, we cannot distinguish in our data in-

dividuals located outdoors (e.g., in streets or parks) from others in buildings. The latter may be

more sheltered from crime, although it is worthwhile to note that about a third of non-domestic

crimes against people (primarily assaults and robberies) happen in buildings.

Another potential concern is the representativeness of the Safegraph panel. According to the

Pew Research Center, 89% of the urban American population owns a smartphone. However,

lower ownership rates among some groups (such as the old and the less-educated) or differ-

ences in smartphone usage between groups may make the panel we use unrepresentative of the

broader population. In Appendix Figure S.3, we check that the Safegraph panel closely tracks the

full population for five neighborhood characteristics: the mean household income, the share of

college-educated, the unemployment rate, the percentage of white people, and the share of the

population below 30 years old. Sampling rates appear to be higher in poorer neighborhoods, but

overall the Safegraph panel seems fairly representative of Chicago’s population.
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2.2 Crime data

The CPD makes publicly available data on each reported crime in Chicago. For each incident, we

observe the time at which it happened, its location4, whether it was a domestic crime or not, and

a description of the crime.

Broadly, crimes can be classified as crimes against persons (e.g., assault, robbery) or crimes

against property (e.g., burglaries, retail theft). For the purposes of our study, we restrict our

analysis to non-domestic crimes and do not consider crimes against society (e.g., human traffick-

ing, child sexual abuse, narcotics violations, weapons violations, gambling, liquor law violations,

white-collar crime) as they usually take place over extended periods of time or are not precisely

located. We further exclude instances of theft in which it is unclear from the description of the

crime whether items are being stolen from people or buildings (and, therefore, whether the crime

should be classified as a crime against persons or a crime against property). Finally, we exclude

crimes involving vehicles because we do not have data on the ambient density of vehicles, which

makes it difficult to define a victimization probability.5

There are 3,444,175 crimes satisfying these restrictions documented in the CPD database be-

tween its first publication (in January 2001) and January 2020, just before the start of the COVID-

19 pandemic. About 59% of the reported crimes are against persons, and the remaining 41% are

crimes against property. Crimes against persons are primarily assaults and battery (about 54%)

and robberies/street theft (about 44%). Homicides and other crimes against persons (e.g., kid-

napping, stalking) each account for less than 1% of all crimes against persons. Crimes against

property are mostly acts of arson and other criminal damage (about 28%), burglaries (about 28%),

retail theft/theft from buildings (about 30%), and criminal trespass (13%). A residual fraction of

crimes against property is simply labeled in the CPD data as “other crimes against property.”

In the main tables of this paper, we report effects of ambient density on battery and assault

(“Assault”, in our regression tables, for short); robbery and street theft (“Theft”); and all crimes

against persons.

In the Appendix, we further report results for homicide, for which estimates tend to be noisy

due to the low number of crimes in this category. We further show results for the following crimes

against property: burglary; criminal damage and arson (“Damage”); criminal trespass (“Tres-

pass”); and retail theft and theft from buildings (“Retail”). Our focus on crimes against persons

stems from the fact that many crimes against property are not witnessed. For these observations,

the time of the crime reported in the CPD data is approximative and sometimes corresponds to

the time at which the crime was discovered.6 This measurement problem makes it harder to

4Crime locations are precise at the block level. In Appendix A.1, we detail the method we use to allocate crimes
to CBGs. Appendix Figure S.4 illustrates the granularity of our dataset.

5In Appendix A.2, we provide further details about crimes excluded from the analysis.
6For example, reports of burglaries peak at 8 a.m., which likely reflects the moment at which the crime was
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interpret our results for these outcomes, although they tend to be consistent across specifications.

Outcome variables. Our crime dataset allows us to estimate standard crime rates as the average

number of crimes per hour in each neighborhood × time cell (for instance, in each neighborhood

× hour of the day × day of the week cell) divided by the number of residents in that neigh-

borhood. For crimes against property, we use these measures as outcome variables. For crimes

against persons, we can estimate the victimization probability (i.e., the probability that a person

in a neighborhood at a given time will be a victim of a crime) by dividing the average number of

crimes in a neighborhood × time cell by the average ambient population in that cell. For legibility,

we multiply victimization probabilities by one million and the number of crimes per hour by one

thousand.

In Appendix Figure S.5, we map average crime rates in different neighborhoods of Chicago.

Crime rates are highest in poorer areas of the city (at the South and West) both for crimes against

persons and crimes against property — several studies have leveraged this spatial heterogeneity

to analyze the socioeconomic determinants of crime (e.g., Cahill and Mulligan, 2003). On top of

this spatial variation, there is important temporal variation in urban crime. Appendix Figure S.6

shows that the intensity of criminal activity is higher in the afternoon, peaking at 3 p.m. for

assault and retail theft; and at 6 p.m. for robbery and street theft.

Knowing which neighborhoods are associated with higher criminal activity or when criminal

activity is most likely to happen in a city does not require using smartphone data. What our

measure of ambient density allows is a mapping of victimization rates with both a high spatial

and temporal resolution, as we can track the number of potential victims in each neighborhood

over time. In Appendix Figure S.7, we map victimization rates in Chicago for different hours of

the day.

There is as much within-neighborhood variation as between-neighborhood variation in crime

rates. Armed with these high-frequency measures of crime rates, a first question we can an-

swer is the following: is there more variation in crime rates between neighborhoods or within

neighborhoods over time? To answer this question, we compute the average crime rate for each

neighborhood × day of the week × hour of the day cell, and in Table 1, we decompose the vari-

ation of these crime rates in within-neighborhood and between-neighborhood variation. We find

that there is as much variation in crime rates within neighborhoods over time as across neigh-

borhoods. This is not driven by the fact that criminal activity is more likely at some times than

others: we find similar results after residualizing our outcomes on day of the week × hour of the

day fixed effects (see Appendix Table S.1). We find similar results for crimes against property (see

Appendix Table S.2).

discovered, as opposed to the moment at which it took place.
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Table 1: Within-neighborhood and between-neighborhood variation in victimization rates

Victimization rates Crimes per resident
(1) (2) (3) (4) (5) (6)

Assault Theft All Assault Theft All

Within CBG variance 48.7% 60.2% 44.3% 43.2% 40.3% 34.1%
Between CBG variance 50% 38.9% 54.3% 55.8% 58.4% 64.6%

Notes: This table decomposes variation in crime rates in between-CBG variation and within-CBG variation (over
time). The dependent variables are victimization rates and the number of crimes per resident. We use one observation
per CBG × day of the week × hour of the day. “Assault” corresponds to assault and battery, “Theft” to battery and
street theft, and “All” corresponds to all crimes against persons – see Section 2.2 for details.

Standard crime rates differ substantially from ambient density-adjusted ones. Typically, crime

rates in a neighborhood are measured by dividing the number of recorded crimes by the number

of residents according to the Census. In contrast, our victimization rate measures use the am-

bient population as the denominator rather than the resident population. These two measures

differ significantly, as shown in Figure 3. In residential neighborhoods, where the ambient popu-

lation is usually lower than the resident population, traditional measures of crime are lower than

ambient population-adjusted victimization rates. Conversely, victimization rates are lower than

per-resident crime rates in more central commercial neighborhoods. In the Loop, for instance, the

per-resident crime rate is more than twice the victimization rate. On average, the two measures

of crime rates differ by 0.35 log points (in either direction), a meaningful difference.

2.3 Crime and ambient density

When ambient density in a neighborhood increases, criminal activity changes due to three effects.

First, the number of potential criminals increases, increasing the number of crimes. Second, as am-

bient density increases, the number of potential victims increases as well and criminals may find

it easier to identify suitable targets. Finally, these effects may be counterbalanced by a deterrence

effect, corresponding to a higher probability of punishment in busier places.

Jacobs (1961) emphasizes the idea that this third effect (which she calls “eyes on the street”)

may be particularly strong, making density an asset for safety. In this paper, we distinguish

between two “eyes on the street” effects: a “strong” effect, where the deterrence effect is so large

that when the number of people in a neighborhood increases, the total number of crimes in that

neighborhood drops; and a “weak” eyes on the street effect, where the deterrence effect makes

victimization rates decrease with density, but not fast enough to make the total number of crimes

decrease.7 In short, the deterrence effect may be dominated by the number of potential victims

7We formalize this distinction in a stylized model of the effect of ambient density on crime in Appendix D.
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Figure 3: Difference between standard and ambient population-adjusted measures of crime

Notes: This map shows the difference (in log points) between a standard measure of crime (the number of reported
crimes divided by the number of residents) and our victimization rate measure (computed as the number of reported
crimes divided by the average ambient population). Areas in red correspond to a per-resident crime rate that is
higher than the victimization rate (i.e., the ambient population-adjusted crime rate). For this figure, we compute
crime measures for all crimes against persons.

and potential criminals increasing with density, making both the sign and the magnitude of the

effect of ambient density on crime ambiguous.

Shifts in crime rates are correlated with shifts in ambient density. In Chicago, denser neigh-

borhoods tend to be safer, as shown in Appendix Figure S.8. However, as people are attracted to

safe neighborhoods, this cross-sectional relationship is of limited interest.

In this paper, we leverage the panel variation of our data and always control for neighborhood

fixed effects. Therefore, we investigate the within-neighborhood variation in crime rates and

analyze what we believe could be an important determinant of this variation: ambient density. In

Chicago, victimization rates drop when a neighborhood becomes busier. During the weekends

or in the evenings, ambient density drops in the center of the city, which is associated with an

increase of victimization rates and a drop in the number of recorded crimes there (see Figure 4).

Conversely, ambient density increases in the outer parts of the city concurrently with a drop in

victimization rates and an increase in the number of detected crimes.

We can more systematically assess this relationship by regressing crime rates on ambient den-

sity at the calendar hour level. We estimate the following equation:
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Figure 4: Correlation between changes in density and changes in crime rates

Panel A: Weekends vs. weekdays

Change in ambient density Change in victimization rate Change in the nb. of crimes

Panel B: Evenings vs. lunchtimes

Change in ambient density Change in victimization rate Change in the nb. of crimes

Notes: This figure maps changes in ambient density, victimization rates, and the number of crimes, for all crimes
against persons. All changes are measures in log points. Panel A shows how density and crime rates change on
weekends relative to weekdays. Panel B shows how density and crime rates change in the evenings (between 6 p.m.
and 10 p.m.) relative to lunchtimes (between 11 a.m. and 2 p.m.).

crimeih = β log(densityih) + γi + δh + εih, (1)

Where crimeih corresponds to a measure of crime (victimization rates for crimes against persons

and the number of crimes per hour for crimes against property) in neighborhood i during calen-

dar hour h, densityih is a measure of ambient density, γi is a CBG fixed effect, and δh is a calendar

hour fixed effect.8 Here and in the following exercises, we use crime rates as an outcome variable

rather than the log of crime rates — this means that estimates of β should be interpreted as semi-

elasticities rather than elasticities. We make this choice because there are no detected crimes in
8The main regressor in our analyses is ambient density rather than ambient population, but using the latter would

provide identical estimates because of the inclusion of CBG fixed effects.
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most neighborhood × time cells. In Section 3.5, we estimate Poisson models to provide elasticity

estimates despite the high prevalence of zeros in the outcome variables.

One issue in estimating this equation for victimization rates is that ambient population ap-

pears both as a regressor and in the denominator of the outcome variable (which is the number

of crimes divided by the number of potential victims). This leads to a (downward) “division”

bias if ambient population is measured with error. This issue can be solved by instrumenting for

log(densityih) (Borjas, 1980). As a first pass, we can instrument for ambient density in a CBG ×
calendar hour cell with the average ambient density in other observations in the same CBG ×
month × day of the week × hour of the day cell.

In Table 2, we present correlational evidence on the link between ambient density and crime.

In this table as well as the following, we normalize outcome variables so that they have an average

of one to facilitate interpretation, and we cluster standard errors at the CBG level. We find that

increasing the ambient density of a neighborhood is associated with a drop in victimization rates

for all crimes against persons. These results are consistent with previous studies suggesting that

natural surveillance is an important determinant of crime rates. For instance, Twinam (2017) uses

the first zoning code of Chicago as an instrument for modern land use, and finds that denser areas

tend to have lower crime rates; and Ellen et al. (2013) finds that vacancies increase crime in their

immediate vicinity using microdata on foreclosures in New York. We also find that increasing

the ambient density of a neighborhood is associated with an increase in the number of crimes per

resident for all crimes against persons, as well as for most crimes against property (see Appendix

Table S.3).

The results of Table 2 do not allow us to conclude that increasing ambient density in a neigh-

borhood makes it safer. Indeed, the estimates we find could be driven by reverse causality. If

people avoid some neighborhoods at times when these neighborhoods are unsafe, then we would

find a negative correlation between victimization rates and ambient density, even in the absence

of a causal effect of ambient density on crime. Omitted variables can also lead to bias in any direc-

tion. For instance, large outdoor events increase density in the neighborhoods in which they take

place and can separately directly affect crime rates through the deployment of additional police

or easier access to victims by criminals as people go outdoors. More generally, composition effects

may play a role in explaining our results: people have different probabilities of being involved

in criminal activity (either as a perpetrator or a victim). Therefore, the effect of “shifting density”

depends on the characteristics of those being shifted. In the next section, we use different sources

of variation to alleviate both concerns.
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Table 2: Calendar hour-level regressions of crime rates on ambient density

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient dens. -0.258∗∗∗ -0.276∗∗∗ -0.268∗∗∗ 0.546∗∗∗ 0.507∗∗∗ 0.532∗∗∗

(0.043) (0.053) (0.034) (0.058) (0.108) (0.069)
CBG FE Yes Yes Yes Yes Yes Yes
Calendar hour FE Yes Yes Yes Yes Yes Yes
Observations 39,547,586 39,547,586 39,547,586 39,547,586 39,547,586 39,547,586
F-statistic 6397.4 6397.4 6397.4 . . .
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 2.197 1.667 3.933 2.105 1.545 3.717

Notes: This table reports correlational evidence on the effect of ambient density on crime against persons. The depen-
dent variables are victimization rates and the number of crimes per resident – see Section 2.2 for details. To facilitate
interpretation, we normalize outcome variables so that their mean is one – pre-normalization means are reported at
the bottom of the table. We include one observation per CBG × calendar hour between January 2018 and January
2020. In columns (1) to (3), ambient density in one CBG × calendar hour is instrumented by the average ambient
density in other observations in the same CBG × month × day of the week × hour cell. We include CBG and calen-
dar hour fixed effects in each regression. Standard errors are clustered at the CBG level. In Appendix Table S.3, we
report estimates for additional types of crime. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3 Do shifts in ambient density affect crime rates?

3.1 A shift-share strategy

Framework. Safegraph can infer where the owner of each smartphone lives by analyzing pings

emitted during the night. We were provided with an aggregation of the data at the CBG × month

× moment of the day level with information on the home location of the smartphones detected

in each cell. “Moments of the day” correspond to divisions of the day by Safegraph in time slots

of two to five hours (e.g., between 3 p.m. and 4:59 p.m.). For instance, the data may report that

among the smartphones that visited CBG D in March 2019 during lunchtime (between 11 a.m.

and 2:59 p.m.), 14 reside in CBG O1, 5 reside in CBG O2, etc. (details about this dataset can be

found in Appendix B.1).9 Interestingly, we find that during the day, about a third of the people in

Chicago do not live in Chicago but rather in the suburbs or further away.

We use this data on origin locations to construct a shift-share instrument (Bartik, 1991), lever-

aging the fact that people living in different locations (e.g., in the suburbs of Chicago vs. in

Michigan) tend to visit Chicago at different times and tend to visit different locations in Chicago

when they come.10

9The moments of the day that Safegraph provide only cover 6 a.m. to midnight, so, unfortunately, most nighttime
hours are excluded from the dataset.

10Allen et al. (2020) use a similar empirical strategy to instrument variation in expenditure across different neigh-
borhoods of Barcelona.
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Specifically, we compute for different home locations j the number of people residing in j who

visit Chicago at time t and denote it by X j
t (here, t corresponds to a month × moment of the

day). The origin locations we consider are Chicago itself, the rest of Illinois, the 49 other states,

Washington DC, the overseas territories of the United States, and Canada. We can also compute

the probability with which a visitor from j will visit different neighborhoods. Using the flows X j
t

as shifts and the probabilities as shares, we can build a shift-share instrument,

Zit = ∑
j

X j
tπ

j
it, (2)

Where π
j
it represents the probability that a visitor from j at time t will visit neighborhood i. To

avoid a mechanical correlation between the instrument and the endogenous variable (in this case,

density), we build leave-out shares — the probability π
j
it is computed using data from other

months of the years (e.g., for observations in January, we only use data from February to De-

cember). For this reason, shares are indexed by time. We instrument for (log) ambient density

with log(Zit). Details on the instrument’s construction can be found in Appendix B.2.

The left panel of Figure 5 shows the variation in flows of visitors from four different origin

locations j. While Chicago tends to be more visited in the summer, there is variation in visit

patterns across states. For instance, there is a peak in the number of visitors from Minnesota

in December, while we do not observe such a pattern for visitors from California. The right

panel of Figure 5 maps the ratio between π
Chicago
it and πRest of Illinois

it (averaged across times t). It

illustrates the heterogeneous exposure of different neighborhoods to flows of visitors originating

from different locations.

Empirical exercises. Because our shift-share instrument is only available at the CBG × month

× moment of the day level, we aggregate our data on density and crime rates at that level for our

regressions. We then estimate an equation similar to equation (1):

crimeit = β log(densityit) + γi + δt + εit, (3)

Where crimeit corresponds to a measure of crime rates and densityit is a measure of ambient

density, instrumented with (the log of) our shift-share IV. CBG fixed effects γi allow us to control

for local time-invariant determinants of crime (such as the presence of a nearby police station),

while time (moment of the day × month) fixed effects δt allow us to account for seasonal and

daily fluctuations in crime patterns.

To increase precision and limit the number of zeros in the dependent variables, we use our full

crime dataset (covering January 2001 to January 2020) to compute the average number of crimes

per hour in a CBG × moment of day × month cell. Such an aggregation over different time
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Figure 5: Illustration of the shift-share instrument
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Notes: The left panel shows the number of visits from four states for all months of the year. We use this variation to
construct shifts in our shift-share instrument, described in Section 3.1. The right panel illustrates that smartphones
originating from different locations visit different parts of Chicago. We map for each neighborhood i the ratio of the
probability that a smartphone visits i conditionally on having a home location in Chicago over the probability that a
smartphone visits i conditionally on having a home location in the rest of Illinois. We use this variation to build the
shares in our shift-share instrument.

periods would be problematic if crime patterns had changed significantly over time in Chicago.

In Appendix Figure S.9, we compare the number of crimes per capita in each neighborhood over

the period for which we have smartphone data (January 2018 to January 2020) with the number

of crimes per capita in each neighborhood over the period for which we do not have smartphone

data (January 2001 to December 2017). We find that the geographical distribution of crime remains

very stable over time, which is consistent with previous findings of the literature (Clarke et al.,

1996; Jean, 2008; Braga et al., 2010; Weisburd et al., 2004). Nonetheless, we will show that our

results are robust to using only data from 2018 to 2020 to measure crime rates.

Identification. The exclusion restriction under which our identification strategy is valid is that

conditional on fixed effects, our instrument is orthogonal to unobserved determinants of crime,

captured in εit. A sufficient condition under which this assumption holds is that the shifts are

exogenous (Borusyak et al., 2022) — in other words, that the timing of the visits to Chicago is

uncorrelated with unobservable determinants of crime.

To better illustrate this assumption, we can consider a situation that would violate the exclu-

sion restriction. Suppose that visitors from California disproportionately spend time in the CBD

of Chicago and that the CBD of Chicago is less safe in February. If Californians do not visit any

part of Chicago in February because they know that the CBD is especially unsafe then, this may
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lead to a correlation between the instrument and the error term.

3.2 Results and robustness

We present linear IV estimates of equation (3) in Table 3, Panel B. The results we find are aligned

with the correlational evidence described earlier. Increasing density by one log point in a neigh-

borhood decreases the probability that someone in that neighborhood will be a victim of an as-

sault (the effect corresponding to 30% of the average assault probability) and of robbery and street

theft (corresponding to 42% of the average rate). We also find that the number of reported crimes

against persons increases with ambient density. This suggests that the elasticity of victimization

rates to ambient density is between -1 and 0. We defer the estimation and discussion of these

elasticities to Section 3.5. OLS estimates (Panel A) suggest stronger beneficial effects of density on

crime, consistent with reverse causality driving part of the negative relationship between ambient

density and crime rates.

Appendix Figure S.10 presents estimation results for more specific crime categories. We find

that ambient density has a particularly strong negative effect on the prevalence of sexual assault:

higher ambient density in a neighborhood is associated with lower victimization rates and fewer

crimes per resident. In contrast, higher ambient density increases victimization rates for pick-

pocketing, consistent with the idea that this type of crime is easier to commit in crowded envi-

ronments.

In Appendix Table S.5, we present IV estimates for homicides and crimes against property.

Increasing density decreases both the probability of being victim of a homicide and the number

of homicides. We find that increasing ambient density has no statistically significant effect on the

probability of burglary and criminal damage. Increasing ambient density is, however, associated

with an increase in trespass and in retail theft.11

Robustness checks. The data collected by the CPD covers both index crime and additional

crimes not tracked by the FBI, such as non-aggravated assaults. In Appendix Table S.6, we check

that we obtain similar results when restricting the dataset to index crimes.

In our analyses, we excluded from the data CBGs with fewer than 200 inhabitants, as density

measures are very noisy for these neighborhoods. In Appendix Table S.7 and Table S.8, we show

that our results are qualitatively unchanged if we decrease or increase this threshold.

In Appendix Table S.9, we show estimation results when using only data on crimes committed

11This last effect is particularly large in magnitude. It is driven by large estimated effects in neighborhoods in
the center of Chicago with high baseline levels of retail theft. Appendix Figure S.5 shows that this type of crime
is concentrated in a handful of neighborhoods, while other types of crime are more evenly distributed throughout
the city. The fact that our results may be driven by a few outlier neighborhoods (crime “hotspots”) is potentially
worrisome. In Section 3.5, we estimate Poisson models that alleviate this concern.
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Table 3: Effects of ambient density on crime against persons

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

Panel A: OLS
(log) Ambient density -0.351∗∗∗ -0.536∗∗∗ -0.431∗∗∗ 0.561∗∗∗ 0.508∗∗∗ 0.537∗∗∗

(0.028) (0.028) (0.022) (0.062) (0.079) (0.057)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150
Panel B: Shift-share IV
(log) Ambient density -0.299∗∗∗ -0.420∗∗∗ -0.353∗∗∗ 0.824∗∗∗ 0.982∗∗∗ 0.887∗∗∗

(0.048) (0.054) (0.038) (0.123) (0.157) (0.112)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5543.000 5543.000 5543.000 5543.000 5543.000 5543.000
Average 1.0 1.0 1.0 1.0 1.0 1.0
Normalization 3.637 2.689 6.410 3.517 2.554 6.150

Notes: This table reports OLS and shift-share IV estimates of the effect of ambient density on crime against
persons. The dependent variables are victimization rates and the number of crimes per resident – see
Section 2.2 for details. To facilitate interpretation, we normalize outcome variables so that their mean is one
– pre-normalization means are reported at the bottom of the table. We include one observation per CBG ×
month × moment of the day. In Appendix Table S.5, we report estimates for additional types of crime. We
show estimates for the first stage regression in Appendix Table S.4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

between January 2018 and January 2020 instead of between January 2001 and January 2020 to

construct the outcome variables in equation (3). The results we obtain are similar to those shown

in Table 3.

In Appendix Table S.10, we show results when data is aggregated at higher levels than the

CBG. Specifically, we show results when aggregating data at the Census tract, City neighborhood,

and community area levels (City neighborhoods and community areas are partitions of Chicago

into units larger than Census tracts). At different geographic levels, we find qualitatively similar

results.

In Appendix Table S.11, we show that our results are robust to excluding Chicago from the set

of origin locations when constructing the shift-share instrument. Finally, in Appendix Table S.12,

we show that our results do not change significantly when we expand the number of origin loca-

tions by including each ZIP code in Chicago’s metropolitan area as a potential origin for visitors.
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3.3 Composition effects

The IV estimates of Table 3 correspond to the effect of changing the ambient density of a neighbor-

hood through shifts in the number of visitors in that neighborhood. Because visitors are different

than locals, our estimates do not only capture the effect of changing the ambient density of a

neighborhood: they also capture the effect of shifting the composition of the ambient population

of that neighborhood.

Although we do not know the age, income, or race of the owners of smartphones detected

in Chicago, we have data on their CBG of residence. We use this data to approximate the char-

acteristics of those in a given neighborhood at a given time and help us gauge the importance

of composition effects. Specifically, we proxy the income of a visitor by the median household

income in their CBG of origin, their age by the median age in their CBG of origin, and their prob-

ability of being white by the share of whites in their CBG of origin (characteristics of CBGs are

taken from the 2015-2019 ACS). This allows us to infer the demographics of people in a neighbor-

hood at a given time

In Table 4, we show estimation results for equation (3) augmented with controls for the com-

position of the ambient population. Adding these controls barely changes the estimates of density

on crime, suggesting that demographic composition only plays a small role in explaining our re-

sults.

3.4 Evidence from temporary transit station closures

Controlling for some characteristics of the ambient population partially rules out composition

effects but cannot fully account for the differences between locals and visitors living outside the

city boundaries. A visitor may be more or less likely to be victimized, to be a criminal, to report

a crime, or to act as a witness than a local with the same age, race, and income. To address

this concern, we exploit a different source of variation that shifts the density of locals rather than

visitors: temporary closures of transit stations for maintenance or upgrading. Phillips and Sandler

(2015) shows that crime decreases around transit stations when stations on the same line close for

maintenance. However, it is unclear whether this decrease comes from a decrease in victimization

rates or a decrease in the number of potential victims. Our data allows us to separate these two

channels.

L stations closures. We collect data on L station closures in Chicago between January 2018 and

January 2020 from the “Monthly Ridership Reports” published by the Chicago Transit Authority

(CTA). These documents report temporary service suspensions due to maintenance and mod-

ernization operations. Our sample has 498 distinct closure events, lasting 3.2 days on average.

Among the 122 L stations in Chicago, 56 experienced at least one closure in our sample period.
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Table 4: Shift-share IV: Composition effects

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.270∗∗∗ -0.426∗∗∗ -0.338∗∗∗ 0.851∗∗∗ 0.981∗∗∗ 0.902∗∗∗

(0.046) (0.055) (0.038) (0.123) (0.157) (0.112)

(log) Average income -0.399∗∗∗ 0.306∗∗∗ -0.102∗∗ -0.259∗∗∗ 0.190∗∗∗ -0.072
(0.070) (0.047) (0.046) (0.081) (0.056) (0.055)

Average age -0.010∗∗ -0.005∗ -0.008∗∗∗ -0.011∗∗ 0.001 -0.006∗

(0.004) (0.003) (0.003) (0.005) (0.003) (0.003)

Share white -0.949∗∗∗ -0.120 -0.599∗∗∗ -1.063∗∗∗ -0.275∗ -0.732∗∗∗

(0.147) (0.104) (0.105) (0.198) (0.151) (0.145)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5240.7 5240.7 5240.7 5240.7 5240.7 5240.7
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime. We study the
same outcomes as in Table 3, adding demographic variables as regressors (see Section 3.3 for details).
We include one observation per CBG × month × moment of the day. Standard errors are clustered at
the CBG level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Empirical strategy. We use these closures as ambient population shifters, considering that when

a station closes, it affects all CBGs within a 200-meter radius. 323 CBGs (out of a total of 2,194) are

close to a station using this definition. We build a panel of the 323 potentially affected CBGs, with

for each of them one observation per day between January 2018 and January 2020. We use the

full panel of smartphone data rather than the aggregated version used in the shift-share strategy.

Using this panel, we estimate the following equation:

crimeid = β log(densityid) + γim(d) + δd + εid (4)

Where crimeid is the crime rate in CBG i during calendar day d, measured using the average

daytime density and the number of daytime crimes (where daytime is between 7 a.m. and 11

p.m.); γim(d) is a neighborhood × month fixed effect; and δd is a calendar day fixed effect. We

instrument ambient density log(densityid) with Closureid, which is neighborhood i’s exposure to

transit closures during day d.

When a station closes, we increase exposure in the neighborhoods close to that station by one

divided by the number of neighborhoods close to that station. Suppose for instance that there are
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four neighborhoods within 200 meters of a given L station. Then, if only this station is closed in

the network, Closureid will be equal to zero everywhere except for the four neighborhoods close to

the closed station, where exposure will be equal to 0.25. On average, there are 3.2 neighborhoods

within 200 meters of a station.

This empirical strategy will yield unbiased estimates of the effects of ambient density on crim-

inal activity if transit station closures are orthogonal to the unobserved determinants of crime,

captured in εid. One potential threat to identification is the strategic timing of closures. Main-

tenance operations are likely conducted when they cause the least disruption. For instance, we

find that closures are more likely to take place on weekends. Stations in the CBD may also be

more likely to close during the summer when fewer people commute to offices. The calendar day

and CBG × month fixed effects that we include in our regressions allow us to control for these

motives to strategically time closures.

Results. Station closures lead to decreases in ambient density in their immediate vicinity: we

find that an exposure to transit closures of one is associated with a drop in ambient density of

about 0.17 log points — see Appendix Table S.13, Panel A, which corresponds to the first stage of

equation (4). Given our definition of exposure, this means that a transit closure decreases ambient

density by 5.4% in close neighborhoods, on average. This regression’s F-statistic is 19.3, which is

smaller than the F-statistic associated with our shift-share regressions but nonetheless sufficient

for inference.

To further support the assumption that conditionally on fixed effects, days with a station clo-

sure are random, we can check that closures do not affect ambient density at hours during which

the L stations are typically closed anyway. In Appendix Table S.13, Panel B, we show that the

effect of a closure on the ambient density of nearby neighborhoods during nighttime hours is

nonsignificant and much smaller than the effect found for daytime hours (we find an estimate of

+0.2%).

Table 5 shows second-stage results. We find again that increasing density is associated with

lower victimization rates and an increase in the number of reported crimes.

As transit station closures remain relatively rare, we implement the randomization inference

test of Young (2019) as an alternative inference procedure. We randomly reassign 2,000 times

transit station closures over the CBG × calendar days of our panel and compare the regression

results associated with these placebo closures with those associated with real closures. Appendix

Figure S.11 provides a graphical representation of this test, which gives us results consistent with

those of Table 5.

Overall, the estimated effects of ambient density using L station closures as a source of exoge-

nous variation are consistent with those obtained from our shift-share instrument strategy. This,

along with the results of Section 3.3, suggests that the correlational evidence presented in Table 2
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Table 5: Effects of ambient density on crime against persons

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

Panel A: OLS
(log) Ambient density -0.555∗∗∗ -0.585∗∗∗ -0.570∗∗∗ 0.389∗∗∗ 0.337∗∗∗ 0.362∗∗∗

(0.049) (0.048) (0.041) (0.081) (0.065) (0.066)
CBG-month FE Yes Yes Yes Yes Yes Yes
Calendar day FE Yes Yes Yes Yes Yes Yes
Observations 244,281 244,281 244,281 244,281 244,281 244,281
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.135 3.076 6.294 3.799 3.784 7.688
Panel B: Transit disruption IV
(log) Ambient density -0.640∗∗ -1.067∗∗ -0.861∗∗∗ 0.807∗∗ 1.763∗ 1.192∗∗

(0.284) (0.467) (0.266) (0.378) (1.053) (0.539)
CBG-month FE Yes Yes Yes Yes Yes Yes
Calendar day FE Yes Yes Yes Yes Yes Yes
Observations 244,281 244,281 244,281 244,281 244,281 244,281
First stage F-stat 19.3 19.3 19.3 19.3 19.3 19.3
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.135 3.076 6.294 3.799 3.784 7.688

Notes: This table reports OLS and IV estimates of the effect of ambient density on crime against persons, us-
ing L-station disruption as an instrumental variable. We study the same outcomes as in Table 3, and include
one observation per CBG × calendar day. Standard errors are clustered at the CBG level. In Appendix Table
S.14, we report estimates for additional types of crime. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

is not due to reverse causality, omitted variable bias or composition effects. These results further

suggest that the effects of ambient density on crime are similar at different time scales. While the

shift-share instrument yields estimates of the effect of seasonal, medium-run changes in density,

the variation from L station corresponds to short-run and more unexpected changes in ambient

density.

3.5 Elasticities

Up to this point, we have focused on estimating semi-elasticities rather than elasticities. This is

justified by the very large number of zeros in our outcome variables but complicates the interpre-

tation of the magnitude of our effects.

To obtain elasticity estimates despite the pervasiveness of zeros in our outcome variables, we

estimate the Poisson Pseudo-Maximum Likelihood (PPML) counterparts of equations (1), (3), and

(4) using the procedure of Correia et al. (2020). Specifically, we estimate
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crimeit = exp
(

β log(densityit) + FEit
)
+ εit, (5)

Where FEit corresponds to fixed effects (CBG and calendar hour fixed effects for equation (1),

CBG and moment × month fixed effects for equation (3), and CBG × month and calendar day

fixed effects for equation (4)).12 For the PPML counterparts of equations (3) and (4), we again use

our shift-share and transit closure instruments for identification. We compute estimates using the

control function method of Wooldridge (2015) and estimate standard errors via bootstrap.

These estimates are presented in Table 6. They are consistent with the results described earlier

— for victimization rates, we find elasticity estimates that are between 0 and -1, implying that

increasing the ambient density of a neighborhood increases the number of crimes but decreases

victimization rates.13 Our preferred estimates are those of Panel B, which leverage the shift-share

instrument. They suggest that increasing ambient density by 1% decreases assault rates by 0.37%,

theft rates by 0.25%, and crime rates for all crimes against persons by 0.36%.

Elasticities for homicide rates and crimes against properties are presented in Appendix Ta-

ble S.15. Estimates using the shift-share instrument suggest that increasing ambient density by

1% decreases homicide rates by 1.01%.14 For crimes against property, our preferred results imply

that increasing density by 1% in a neighborhood decreases the number of burglaries by 0.08%,

and increases the number of criminal damages by 0.24%, the number of criminal trespass by

0.38% and of retail thefts by 0.93%.

3.6 Mechanisms

The most natural explanation for the beneficial effects of density we measure is what Jane Jacobs

called “eyes on the street”: increasing the number of people in a neighborhood leads to more

natural surveillance, which deters potential criminals. As described in Section 2.3, the “eyes on

the street” effect could be “weak” or “strong”. For most crimes, we find support for the weak

effect, but not for the strong one: increasing density lowers victimization rates, but increases

the number of crimes. While it is difficult to ascertain that natural surveillance is driving our

results, we provide two additional results that support this interpretation, before excluding some

alternative explanations.

12Because we are estimating a count model here, our outcomes of interest are the number of crimes in each neigh-
borhood. To make results easier to interpret, we report for crimes against people β − 1 instead of β, and interpret the
corresponding estimate as the elasticity of the victimization rate to density. Indeed, because the victimization rate is
the number of crimes divided by the ambient population, the elasticity of the number of crimes to density equals one
plus the elasticity of the victimization rate to density.

13There is one exception: the elasticity of theft rates to density we estimate using transit closures as an instrument
falls outside of the [-1, 0] range, although our estimate is statistically indistinguishable from -1.

14We estimate a large and positive but extremely noisy elasticity for homicide when using transit closures as an
instrument. This is due to the very small number of homicides observed around transit stations during our study
period.
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Table 6: Effects of ambient density on crime against persons: PPML estimates

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

Panel A: Correlational evidence
(log) Ambient dens. -0.711∗∗∗ -0.652∗∗∗ -0.691∗∗∗ 0.289∗∗∗ 0.348∗∗∗ 0.309∗∗∗

(0.023) (0.033) (0.021) (0.023) (0.033) (0.021)
CBG FE Yes Yes Yes Yes Yes Yes
Calendar hour FE Yes Yes Yes Yes Yes Yes
Observations 39,852,048 39,852,048 39,852,048 39,852,048 39,852,048 39,852,048
Panel B: Shift-share IV
(log) Ambient dens. -0.369∗∗∗ -0.252∗∗∗ -0.361∗∗∗ 0.631∗∗∗ 0.748∗∗∗ 0.639∗∗∗

(0.064) (0.040) (0.033) (0.064) (0.040) (0.033)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
Panel C: Transit closure IV
(log) Ambient dens. -0.756∗∗∗ -1.086∗∗∗ -0.973∗∗∗ 0.244 -0.086 0.027

(0.155) (0.135) (0.094) (0.155) (0.135) (0.094)
CBG × Month FE Yes Yes Yes Yes Yes Yes
Calendar day FE Yes Yes Yes Yes Yes Yes
Observations 244,281 244,281 244,281 244,281 244,281 244,281

Notes: This table reports PPML estimates of the effect of ambient density on crime against persons. Estimates for
victimization rates correspond to the estimates on crimes per resident, minus one. In Panel A, we use a calendar
hour-level panel and do not instrument ambient density. In Panel B, we use the same dataset and instrument as in
Table 3. In Panel C, we use the same dataset and instrument as in Table 5. For estimation, we use the control function
method, as described in Wooldridge (2015). Standard errors in all panels are clustered at the CBG level. In Appendix
Table S.15, we report estimates for additional types of crime. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Social cohesion. According to Jacobs, the beneficial effects of having “eyes on the street” are

strongest when social ties are strong. To test whether this hypothesis is supported in the data,

we extend equation (3) by interacting ambient density with quintiles of the social capital index

developed by Kyne and Aldrich (2020). This metric reflects socioeconomic homogeneity, civic

engagement, and community participation.

Results for all crimes against persons, summarized in Figure 6(a), reveal that the beneficial ef-

fects of ambient density are stronger in neighborhoods with higher levels of social capital. More-

over, social capital appears to be a stronger predictor of these benefits than traditional sociodemo-

graphic characteristics. Neither income levels nor unemployment rates exhibit a clear relationship

with the effect of density on crime rates (panels b and c). While panel (d) suggests stronger effects

in neighborhoods with lower white population shares, estimates lack precision. Overall, we take
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these results as supportive evidence for the role of natural surveillance in the beneficial effects of

ambient density we uncover.

Figure 6: Heterogeneous effects by neighborhood sociodemographic characteristics

(a) Social capital (b) Income (c) Unempl. rate (d) Share white
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Notes: This figure shows shift-share IV estimates and 90% confidence bands of the effects of ambient density on
crime rates (for all crime against persons) for different quintiles of four sociodemographic variables. In panel (a), Q1
corresponds to the 20% of neighborhoods with the lowest social capital index from Kyne and Aldrich (2020), and Q5
corresponds to the 20% of neighborhoods with the highest social capital index. Income, unemployment rates, and
the share of white residents are taken from the 2015-2019 ACS.

Daytime vs. nighttime. If natural surveillance contributes to the beneficial effects of density,

its influence should be stronger during the day than during the night. Leveraging daylight sav-

ing time as an exogenous source of variation in daylight exposure, recent studies demonstrate

reduced crime rates during daylight hours (Doleac and Sanders, 2015; Domı́nguez and Asahi,

2023), consistent with a lower visibility at night reducing the potency of having eyes on the street.

In Appendix Table S.16, we show that the beneficial effects of density are strongest during day-

time, by estimating equation (3) excluding time intervals predominantly occurring after sunset.

This lends further support to natural surveillance playing a role in the beneficial effects of density

we find.

Reporting rates. One concern that taints any study of crime is the fact that we can only measure

crimes that have been reported to the police. Any variation in observed crime rates is a compound

of the variation in the true crime rate and variation in the reporting rate.15 In our case, increasing

ambient density is likely to increase the rate at which crimes are reported, as it makes more likely

that bystanders witness a crime. Therefore, varying reporting rates are unlikely to explain our

results and instead make our estimates conservative.
15This concern is more important for some types of crime than others. Homicides and burglaries have high report-

ing rates, while retail theft is likely to be very underreported.
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Police presence. One channel through which ambient density could affect crime rates is the

location of police officers. If police forces follow people, then increasing the ambient density in

a neighborhood will increase the density of police officers in that neighborhood. This, in turn, is

likely to make crime rates drop (see, e.g., Di Tella and Schargrodsky, 2004; Klick and Tabarrok,

2005; Draca et al., 2011). Through FOIA requests to the CPD, we gathered data on the number

of police officers patrolling each police beat during each hour between January 2013 and January

2020. Details about police presence data can be found in Appendix C. We find that police presence

decreases when ambient density increases, possibly due to police officers targeting less dense (and

hence less safe) neighborhoods – see Table S.17. Therefore, changes in police presence induced

by changes in ambient density is unlikely to explain our results and again make our estimates

conservative. Moreover, in Appendix Table S.18, we show estimation results for equation (3)

augmented with the (log) number of police officers. Adding this control has little effect on the

estimates of density on crime, suggesting that police presence is not explaining our results.

4 Policy relevance

In this last section, we relate our results to two recent policy debates. First, we assess whether

policies that tend to spread ambient density more evenly can help limit urban crime. Second, we

evaluate the potential consequences of a development of work-from-home on ambient density

and crime rates in Chicago.

4.1 Should we spread ambient density more?

Urban planners have discussed the effect of ambient density on crime because the distribution of

people in cities is shaped by planning decisions. Zoning codes, for instance, largely determine

the density of construction in cities and the type of buildings one can find in each neighborhood.

A high-density commercial neighborhood will witness high ambient density during weekdays

between 9 a.m. and 5 p.m. and more limited density during the nights and on weekends. A

single-family zoned neighborhood will have low ambient density levels throughout the week.

More generally, a city with a dense core and sprawling outer neighborhoods will have a more

concentrated distribution of people than a city with a more uniform building pattern. A city with

separated uses (e.g., residential vs. commercial) will have a more concentrated population at any

given moment than a city with mixed-use neighborhoods.

Many urban planners insist that city designs that spread ambient density are beneficial to

public safety.16 Underlying their arguments is the idea that there are decreasing returns to scale

16Jane Jacobs, in her 1961 Death and Life of Great American Cities, advocated for the development of mixed-use neigh-
borhoods (which have users throughout the day) instead of single-use neighborhoods which are deserted during the
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in the efficiency of density to deter crime — adding a small number of people in a deserted street

will make it noticeably safer, but adding more people to a busy neighborhood will have little

effect.

To assess whether this intuition is confirmed in our data, we augment equation (3) with inter-

actions of ambient density with quintiles of average ambient density. We summarize our results

for our baseline categories in Figure 7 — we find that the beneficial effects of density are the

largest in low-density and medium-density neighborhoods, and smaller for the densest neigh-

borhoods. These results are consistent with the intuition of urban planners. They suggest that

on the margin, gains in public safety can be obtained by moving people away from the busiest

neighborhoods to neighborhoods with a lower density.

Figure 7: Heterogeneous effects by average ambient density
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Notes: This figure shows shift-share IV estimates and 90% confidence bands of the effects of ambient density on crime
rates for different quintiles of average ambient density. Q1 corresponds to the 20% of neighborhoods with the lowest
average ambient density, and Q5 corresponds to the 20% of neighborhoods with the highest average ambient density.

4.2 The consequences of work-from-home on crime patterns

Although zoning policy can influence the distribution of ambient density, the most significant

change in people flows that cities will witness in the coming decade will likely be due to techno-

logical change — specifically through the development of work-from-home. Dingel and Neiman

(2020) find that 39% of the workers in the Chicago metropolitan area could work from home. In

this section, we evaluate how this change could affect crime rates in Chicago.

day (for exclusively residential neighborhoods) or the evenings (for fully commercial neighborhoods). More recently,
the New Urbanism movement has advocated for average-density, mixed-use neighborhoods with similar arguments.
According to their charter, the first quality of a safe space is human presence: “The sense that we are not alone and
are being observed helps us behave properly and feel safe. [...] Mixed-use buildings help promote 24-hour presence”
(Congress for the New Urbanism, 2000).
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The effect of work-from-home on ambient population. First, we assess the potential effect of

work-from-home on the ambient population distribution in Chicago. To do so, we estimate the

following linear model:

log(ambient populationidh) = βdhXi + εidh (6)

Where i is a CBG, d is a day of the week, and h is an hour of the day, and X is a matrix of CBG

characteristics. Intuitively, for each day of the week × hour of the day, we predict (log) ambient

population using a set of time-invariant CBG characteristics.

We use as CBG characteristics the (log) number of people living in the CBG, the (log) number

of people working in the CBG, the (log) number of people living and working in CBGs nearby

(within a 5-minute drive, or a 5-10 minute drive), and the number of points of interests (POIs) of

eight different types (e.g., restaurants, stores).17

The model accurately predicts ambient population in different parts of the city, with an ad-

justed R-squared of 0.89. While we include 14 CBG characteristics in the matrix X, the most

important are the number of people working in the CBG and the number of people living in

the CBG. Including only these two variables in X yields an adjusted R-squared of 0.86 (see Ap-

pendix Table S.19). We report the estimated coefficients for equation (6) in Appendix Figures S.12

and S.13.

We then construct a counterfactual distribution of work locations. In the counterfactual, the

number of people working in CBG i is:

nW,cf
i = ∑

j

[
(WFH sharej)nH

i sH
ij + (1 − WFH sharej)nW

i sW
ij

]
(7)

Where nW
i (resp. nH

i ) is the number of workers (resp. residents) in CBG i, sW
ij (resp. sH

ij ) is the

share of workers (resp. residents) of CBG i working in industry j, and WFH sharej is the share of

workers in industry j that can work from home, which we take from Dingel and Neiman (2020).

Industries are 2-digit NAICS sectors, and the shares sW
ij , sH

ij are taken from the LODES dataset.

This allows us to build a counterfactual matrix of neighborhood characteristics X̃ and to pre-

dict the counterfactual ambient population that we would observe in each CBG, day of the week,

and hour of the day (by replacing X by X̃ in equation 6).

Figure 8 shows the result of this procedure for two neighborhoods of Chicago: in the Loop,

we unsurprisingly find that ambient density drops sharply during weekdays when work-from-

17We obtain the number of people living and working in each neighborhood from the Safegraph data: the home
location of each smartphone is obtained as its primary location between 6 p.m. and 7 a.m., and its work location is
obtained as its primary location between 9 a.m. and 5 p.m. We estimate travel times between CBGs in the Chicago
Metropolitan Area using a Multi-Level Dijkstra algorithm implemented by Luxen and Vetter (2011) in combination
with transportation network data retrieved from OpenStreetMap. Data on the number of POIs of each type is re-
trieved from Safegraph.
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home becomes widespread. In the more residential neighborhood of Lake View, ambient density

slightly increases throughout the week. Panel (a) of Figure 9 shows how daytime density changes

in all CBGs of Chicago in our counterfactual scenario.

Figure 8: The effect of work-from-home: Examples of counterfactual ambient densities

(a) The Loop (Central Business District) (b) Lake View (Residential neighborhood)
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Notes: This figure compares the observed ambient population of two large neighborhoods of Chicago (delineated by
the Office of Tourism) with their counterfactual ambient population levels after changing the work location of 39%
of the workers in Chicago to be the same as their home location. In each panel, we show ambient density levels for
each hour of the week, with vertical dotted lines corresponding to noon.

The effect of work-from-home on crime rates. Armed with these counterfactual ambient den-

sity distributions, we estimate how crime rates in different neighborhoods would change if work-

from-home became widespread. To this end, we calibrate γi and δdh in the following equation,

using as β’s those estimated in Section 3.5:

crimeidh = exp(β log(densityidh) + γi + δdh) + εidh. (8)

This is the PPML equation that we estimated in Section 3.5, with observations at the CBG × day

of the week × hour of the day level, instead of the CBG × month × moment of the day level. We

make this change because variation over days of the week is more relevant than variation over

months of the year when studying the consequences of work-from-home.

Counterfactual crime rates are found by replacing in equation (8) densityidh by our estimated

counterfactual density. We show the results of this procedure in Figure 9(b). As expected, the

most important changes in crime rates are in the central neighborhoods of Chicago. In the Loop,

the victimization rate for all crimes against persons is predicted to increase by 7.7% (assault rates

increase by 8.1%, and theft rates increase by 5.2%). In contrast, crime rates decline in residential
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neighborhoods on the outskirts of Chicago, echoing the findings of Matheson et al. (2024), who

show that the rise of remote work has led to a reduction in burglaries.

Figure 9: The effect of work-from-home: Counterfactual changes in densities and crime rates

(a) Change in daytime density (b) Change in victimization rates
(all crimes against persons)

Notes: This figure maps the predicted change in the average ambient density between 7 a.m. and 10 p.m. (Panel
A) and the average victimization rates for all crimes against persons (Panel B) if 39% of workers in Chicago worked
from home.

Discussion. Work-from-home is expected to cause large drops in real estate prices in city cores

(see, e.g., Gupta et al., 2022; Delventhal et al., 2022). Our results suggest that work-from-home is

likely to further strain central neighborhoods of cities by increasing crime rates there. In our exer-

cise, we build a counterfactual ambient density distribution without considering its endogenous

response to crime rates. Previous work has shown that higher crime levels in a neighborhood

lead to fewer people visiting businesses in that neighborhood (Fe and Sanfelice, 2022). Combined

with our work, this evidence shows that neighborhoods can be caught in vicious (or virtuous)

cycles: an increase in the crime level in a neighborhood can lead to a decrease in the activity of

that neighborhood, which in turn tends to further increases in crime rates. General equilibrium

effects, including the relocation of residents and businesses away from the city core, are likely to

further magnify the effects that we describe. Overall, our results support the hypothesis that the

core neighborhoods of cities are facing the risk of a downward spiral in the coming decades.
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5 Conclusion

There is usually considerable variation in public safety within a city. Environmental factors (such

as air quality or street lighting) and police presence can explain part of this variation, but the ex-

tent to which a neighborhood will be safe depends largely on intricate social interactions (Glaeser

et al., 1996; Sampson et al., 1997). In particular, ambient density is believed to be an important

determinant of crime rates by continuously changing the potential rewards and costs of crime in

each neighborhood. Whether busier areas will be safer is a priori unclear as higher densities of

people increase the likelihood that a potential criminal meets a suitable victim but also increase

the probability that a crime will be witnessed. While the relationship between ambient density

and crime is a key component of most theories of urban crime, the empirical exploration of this

link has been complicated by measurement difficulties.

High-frequency measures of ambient density allow us to better study this question for two

reasons. First, it allows us to measure crime rates with a high spatial and temporal resolution. This

can help us go beyond cross-sectional studies, which is valuable as there is considerable variation

in public safety within neighborhoods across time. Second, it provides us sufficient statistical

power to measure causal, rather than correlational, relationships. We find that increasing ambient

density in a neighborhood increases the number of crimes recorded there but lowers victimization

rates.

Our study also illustrates the fact that the effects of density depend on the spatial scale one

considers. In the United States, denser cities have higher crime rates, likely because of sorting

effects (Glaeser and Sacerdote, 1999). At this macro spatial scale, crime is a congestion force that

may limit cities’ growth. Conversely, at a more micro scale, the concentration of people appears

to be an asset.
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Appendix

A Crime data

A.1 Assignment of crimes to CBGs

The data provided by the Chicago Police Department (CPD) provides for each crime a location
coded as a latitude and longitude. For privacy purposes, these coordinates are randomly shifted
but fall on the same block as the true coordinates. In several instances, crimes happen on the
border between CBGs. To properly allocate crimes to CBGs, we draw a 10-meter radius disk
around each set of crime coordinates. For a given crime, if the disk intersects a single CBG, we
assign the crime to that CBG. If the disk intersects n CBGs, we assign the crime to these n CBGs,
weighing it by 1/n. For instance, if a crime is on a boundary between two CBGs, we increase the
number of crimes in both CBGs by 1/2.

A.2 Crimes excluded from the analysis

Between January 2001 and January 2020, the CPD has recorded 7,070,606 crimes (about 3.2 crimes
per CBG per week). We only keep about half of all recorded crimes in our analysis. Indeed,
we drop 939,003 domestic crimes; 1,662,080 crimes against society (mostly narcotics violations
and deceptive practices); 335,158 thefts and attempted thefts which cannot be classified as crimes
against persons or crimes against property; and 690,190 crimes involving vehicles. This leaves us
with 3,444,175 crimes in the analysis dataset.

B Using data on the origin locations of smartphones

B.1 Data provided by Safegraph

On top of data on the number of ping clusters detected in a CBG during a given hour, Safegraph
provides us with data on the origin locations of smartphones. For every month in our study
period and CBG, Safegraph provides a list of the home locations of the smartphones that visited
that CBG during that month. The home location of a smartphone is determined by Safegraph as
the CBG that is the primary nighttime location of that smartphone. Safegraph further details the
home locations of visitors of each CBG for each month for five “moments of the day”:

• Breakfast (between 6 a.m. and 10:59 a.m.);

• Lunchtime (between 11 a.m. and 2:59 p.m.);

• Afternoon (between 3 p.m. and 4:59 p.m.);

• Dinner (between 5 p.m. and 8:59 p.m.);

• Nightlife (between 9 p.m. and midnight).

For instance, Safegraph may report that among the smartphones that visited CBG D during March
2019 between 11 a.m. and 2:59 p.m., 14 reside in CBG O1, 5 reside in CBG O2, etc. Because of
privacy concerns, Safegraph adds some noise to the number of visitors from each home location.
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Specifically, Safegraph adds Laplacian noise to the number of visitors for all origin-destination
pairs which are observed in their data. After adding noise, only origin-destination pairs with
at least two devices are included in the data. If there are between 2 and 4 visitors in an origin-
destination pair, it will be reported in the data as 4 visitors.

B.2 Constructing shifts and shares

Using this data from Safegraph, we can construct a variable Vj,i,h,m,y corresponding to the number
of visitors from origin j who visited CBG i at time of day h during month m of year y. j can be the
city of Chicago itself, the rest of Illinois, one of the the 49 other states, Washington DC, an overseas
territory of the United States, or Canada (although our measure of density includes visitors from
all countries, Safegraph does not provide a decomposition of the number of visitors by country
of origin, with the exception of Canada). i can be any of the 2194 CBGs of Chicago.

Shifts. To construct shifts, we first estimate the number of visitors to Chicago originating from
j for all values of h, m, and y: X j

hmy = ∑i Vj,i,h,m,y. Then, we average X j
hmy over years.

Shares. To construct shares, we first find for each moment of day h and month m the typical
flows of visitors by averaging Vj,i,h,m,y over different years in our data (V̄j,i,h,m = Ey[Vj,i,h,m,y]). We
then find for each (h, m) pair the probability that a visitor for j will go to location i:

π̃
j
ihm =

V̄j,i,h,m

∑i′ V̄j,i′,h,m
.

Finally, we compute shares for a month m as the average value of π̃
j
ihm for other months.

C Police presence data

We obtained administrative records on sworn officers using a Freedom of Information Act (FOIA)
request to the CPD. The CPD provided us rosters of all active officers between January 2013 and
January 2020, with their daily shift and beat assignment. We first map the boundaries of police
beats to CBGs. To do so, we intersect the boundaries of CBGs with boundaries of police beats.
Because one geography is not strictly contained in the other, we compute the share of each police
beat falling in each CBG and allocate officers to CBGs proportionally to these shares. We then
count the number of police officers on duty in each CBG and at each moment of the day, and
average over years. This provides us with a panel of the number of police officers at the CBG ×
month × moment of day level. In regressions, we use the logarithm of the number of officers and
discard the 199 cells with no recorded officers.

D Stylized model of the effect of ambient density on crime

In this section, we build a stylized model of criminal activity to formally describe the mechanisms
underlying our reduced-form estimates of the effect of ambient density on crime.
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Setting. We consider a single location whose surface area we normalize to one. Ambient density
a is the number of agents in that location at a given time. Each agent is a potential criminal, a
potential victim, and also a potential witness that can help report crimes. Committing a crime
yields a gross reward R, but is associated with a probability of being caught p and a cost of
being arrested f (corresponding to a fine or prison time). Agents also have idiosyncratic costs of
engaging in criminal activity, denoted by η, which corresponds to an opportunity cost of time (and
increases with the agent’s wage and value of leisure), as well as the psychological cost associated
with breaking the law. Agents decide to engage in a criminal activity if the expected return to
crime exceeds its cost, i.e., if R − p f > η.

Victimization rates and ambient density. We consider that η is drawn from an exogenous dis-
tribution with cumulative distribution F. The probability of committing a crime is then F(R− p f ),
and the average (expected) number of crimes is c = aF(R − p f ). The victimization rate, i.e., the
number of crimes per person, is equal to v = F(R − p f ).

As density increases, the number of potential victims increases and criminals may find it easier
to identify suitable targets. We thus assume that the gross reward R increases with ambient den-
sity. However, increasing ambient density might increase deterrence through a higher probability
of punishment in busier places, so that p increases with ambient density as well.

The effect of ambient density on crime. The elasticity of the victimization rate to density ϵv
a is

then:

ϵv
a =

d log(v)
d log(a)

=
a
v

F′(R − p f )[R′(a)− p′(a) f ] (S.1)

F(.) is a cumulative distribution function, so F′(.) > 0 and the sign of ϵv
a is determined by the

term in brackets, the marginal net return to criminal activity. As both R and p are increasing with
density, the effect of ambient density on victimization rates is ambiguous.

The number of crimes is c = va. Hence, the elasticity of the number of crimes to ambient density:

ϵc
a = 1 + ϵv

a

“Weak” and “strong” effects. If the marginal increase in deterrence is sufficiently large to out-
pace the marginal increase in the gross reward to criminal activity, increasing density decreases
the victimization rate (ϵv

a < 0). When the deterrence effect is so large that ϵv
a < −1, the number of

crimes decreases with ambient density (ϵc
a < 0). We can refer to this scenario as a “strong” effect

of ambient density on crime, while when ϵv
a ∈]− 1, 0[, we only have a “weak” effect.

Composition effects. The effect of ambient density on crime may depend on the types of agents
that are in the location. Adding to a location people who are easier to rob or more likely to commit
a crime will likely have a different effect to adding people who are well shielded from crime or
are perfectly law-abiding.

Suppose for instance that the gross return to crime R does not only depend on the level ambi-
ent density a but also on the composition of ambient density. If there are two types of individuals, 1
and 2, and we denote by s1 the share of type 1 individuals in the location, then, when R = R(a, s1),
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we have:

d log(v) = ϵv
ad log(a)︸ ︷︷ ︸
Baseline

+
F′(R − p f )
F(R − p f )

Rs1ds1︸ ︷︷ ︸
Composition

where ϵv
a is now the partial elasticity of the victimization rate to density and Rs1 is the partial

derivative of R with respect to s1. The composition effect reflects the different marginal changes
in gross return from different types of potential victims.

Alternatively, the gross reward R can vary across individuals as a function of their type (be-
coming R1 or R2). In this case, we have:

d log(v) = ϵv
ad log(a)︸ ︷︷ ︸
Baseline

+ [F(R1 − p f )− F(R2 − p f )]ds1︸ ︷︷ ︸
Composition

Here, the composition effect reflects the different marginal changes in gross returns to ambient
density for different potential criminals.

Non-linear effects of ambient density on crime. Our empirical evidence in Section 4.1 suggests
that the elasticity ϵv

a decreases in magnitude as ambient density increases. In our model, the
derivative of ϵv

a with respect to log(a) is

dϵv
a

d log(a)
= ϵv

a + a(R′ − p′ f )ϵv
a

[F′′(.)
F′(.)

− F′(.)
F(.)

]
+ a2(R′′ − p′′ f )

F′(.)
F(.)

. (S.2)

The sign of this expression is ambiguous and depends on the sign of (R′′− p′′ f ) and
[

F′′(.)
F′(.) −

F′(.)
F(.)

]
.

When η is drawn from a Fréchet distribution with parameter α, F(x) = e−x−α
, and

(
F′′(x)
F′(x) −

F′(x)
F(x)

)
= − α+1

x < 0 : the first two terms of Equation (S.2) are unambiguously negative, as ϵv
a

(and (R′ − p′ f )) is negative. Then, whether ϵv
a increases with a ultimately depends on whether

marginal returns to criminal activity increase with density, i.e., whether (R′′ − p′′ f ) > 0. Increas-
ing marginal returns to density may emerge through at least two channels. First, the effect of
density on the probability of punishment may be lower in already dense neighborhoods. Second,
the gross reward to criminal activity may exhibit increasing returns to scale, as it may be easier
for potential criminals to find a suitable victim as density increases.
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E Additional Figures

Figure S.1: Average ambient density in Chicago

Weekdays Weekends

Notes: This figure shows the average ambient density in Chicago measured using smartphone pings, separately for
weekdays and weekends. During the weekends, there is a considerable drop in ambient density in the city center
(the brightest region in both panels).

Figure S.2: Maps of example CBGs

University of Chicago Museum Campus River North

Gothic campus Planetarium, aquarium Shops, restaurants

Notes: This figure shows maps of the three CBGs used as examples in Figure 2.
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Figure S.3: Representativeness of the Safegraph panel
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Notes: This figure plots distributions of CBG characteristics (mean household income, share of college-educated in
the population above 25, unemployment rate in the civilian labor force above 16, share of whites, and share of the
population aged 29 and below) for the full population (according to the 2015-2019 5-year ACS) and for the Safegraph
panel.
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Figure S.4: Geolocated crime data

Notes: This figure shows all crimes that took place in a neighborhood of Chicago over one year. Each dot corresponds
to a crime.

44



Figure S.5: Crime rates in Chicago: Spatial variation

Panel A: Homicide Panel B: Battery and assault

Panel C: Robbery and street theft Panel D: Burglary

Panel E: Criminal damage and arson Panel F: Retail theft and theft from buildings

Notes: This figure maps average crime rates in the CBGs of Chicago. For crimes against persons, we report the
average victimization rate, i.e., the probability that a visitor in the neighborhood will be a victim of a crime during
a given hour. Victimization rates are computed by dividing the number of crimes by the ambient population. For
crimes against property, we report the number of crimes per hour per resident. For clarity, both victimization rates
and the number of crimes per resident are multiplied by 1,000,000, and variables are winsorized.
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Figure S.6: Number of crimes per hour

Panel A: Crimes against persons
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Notes: This figure shows the average number of crimes per hour for different hours of the day.
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Figure S.7: Battery and assault victimization rates: Daily evolution

Notes: This figure maps the average battery and assault victimization rate for CBGs in Chicago for several hours of
the days.
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Figure S.8: Cross-sectional relationship between crime and density
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Notes: This figure shows binscatters illustrating the cross-sectional relationship between crime rates and population
density at the CBG level. Crime rates are measured as the average number of crimes per resident per hour, times
100,000. The number of residents in a CBG is taken from the ACS.
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Figure S.9: Persistence of crime rates

Notes: This figure compares the spatial distribution of crime rates in the time period for which we have smartphone
data (January 2018 to January 2020) with the distribution of crime rates in the period for which we do not have
smartphone data (January 2001 to December 2017). For different types of crime, we compare the (log) number of
crimes per capita and per year in both periods. In all panels, each dot corresponds to a CBG. For both periods, we
measure the population of each CBG using the 2015-2019 5-year ACS.
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Figure S.10: Effects of ambient density on subcategories of crimes against persons

(a) Victimization rates

Assault
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(b) Crimes per resident
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Notes: This figure reports shift-share IV estimates of the effect of ambient density on crime, for finer categorizations
of crime than in Table 3. Panel (a) reports results for victimization rates and panel (b) reports results for the number
of crimes per resident. All outcome variables are normalized so that their mean is one. As in Table 3, we include one
observation per CBG × month × moment of the day, and include both CBG and moment-month fixed effects.
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Figure S.11: Transit closure IV: Randomization inference

(a) Battery and assault
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(b) Robbery and street theft
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(c) All crimes against persons
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Notes: This figure shows the distribution of the 2000 t-statistics from the randomization inference procedure described
in Section 3.4. t-statistics from the true closures are represented by the vertical dashed gray lines. We used the Stata
package parallel (Vega Yon and Quistorff, 2019) to accelerate the computation of these statistics.
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Figure S.12: Predicting ambient density: Estimation results (1)
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Notes: In this figure, we show the coefficients of equation (6), estimated by OLS. Each plot corresponds to a neigh-
borhood characteristic, and in each plot, we show coefficients for different hours of the day and different days in the
week. This figure only shows coefficient estimates for the number of people living/working in the focal CBG and
nearby CBGs. It is continued on Appendix Figure S.13.
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Figure S.13: Predicting ambient density: Estimation results (2)
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Notes: This figure continues Appendix Figure S.12 with the estimated coefficients for equation (6) corresponding to
different POIs.
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F Additional Tables

Table S.1: Within-neighborhood and between-neighborhood variation in crime rates: After resid-
ualizing time fixed-effects

Victimization rates Crimes per resident
(1) (2) (3) (4) (5) (6)

Assault Theft All Assault Theft All

Within CBG variance 48.4% 59.3% 43.7% 40.6% 38.8% 31.3%
Between CBG variance 50.3% 39.8% 54.9% 58.5% 60% 67.5%

Notes: This table shows the same decomposition as that of Table 1, after crime rates have been residualized on day of
the week × hour of the day fixed effects.

Table S.2: Within-neighborhood and between-neighborhood variation of additional types of crime

V. rate Crimes per resident
(1) (2) (3) (4) (5) (6)

Homicide Homicide Burglary Damage Trespass Retail

Within CBG variance 97.3% 95.7% 67.5% 63.3% 42% 53.9%
Between CBG variance 2.6% 4.3% 32.3% 36.2% 56.7% 45%

Notes: This table decomposes variation in homicides rates and crime against property in between-CBG variation and
within-CBG variation (over time). The dependent variables are victimization rates in column (1) and the number of
crimes per resident in columns (2) to (6). We use one observation per CBG × day of the week × hour of the day.
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Table S.3: Calendar hour-level regressions of crime rates on ambient density

V. rate Crimes per resident

(1) (2) (3) (4) (5) (6)
Homicide Homicide Burglary Damage Trespassing Retail

(log) Ambient dens. -0.394∗∗ 0.186∗ -0.017 0.061∗∗∗ 0.384∗∗∗ 1.579∗∗∗

(0.189) (0.100) (0.030) (0.021) (0.060) (0.375)
CBG FE Yes Yes Yes Yes Yes Yes
Calendar hour FE Yes Yes Yes Yes Yes Yes
Observations 39,547,586 39,547,586 39,547,586 39,547,586 39,547,586 39,547,586
F-statistic 6397.4 . . . . .
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 1.000 0.028 0.517 0.655 0.272 0.868

Notes: This table reports correlational evidence on the effect of ambient density on homicide rates and crime against
property. The dependent variables are victimization rates in column (1) and the number of crimes per resident in
columns (2) to (6). To facilitate interpretation, we normalize outcome variables so that their mean is one – pre-
normalization means are reported at the bottom of the table. We include one observation per CBG × calendar hour
between January 2018 and January 2020. In column (1), ambient density in one CBG × calendar hour is instrumented
by the average ambient density in other observations in the same CBG × month × day of the week × hour cell. We
include CBG and calendar hour fixed effects in each regression. Standard errors are clustered at the CBG level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S.4: Shift-share IV: First stage

(1)
(log) Ambient density

SSIV 0.862∗∗∗

(0.012)
CBG FE Yes
Moment-month FE Yes
Observations 130,620
Within R2 .338

Notes: This table reports the effect of the shift-share IV
on ambient density – this regression corresponds to the
first stage of equation (3). We include one observation
per CBG × month × moment of the day. Standard errors
are clustered at the CBG level. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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Table S.5: Effects of ambient density on additional types of crime: Shift-share IV

V. rate Crimes per resident

(1) (2) (3) (4) (5) (6)
Homicide Homicide Burglary Damage Trespass Retail

(log) Ambient density -0.761∗∗∗ -0.576∗∗∗ 0.031 -0.016 0.805∗∗∗ 5.479∗∗∗

(0.134) (0.169) (0.042) (0.036) (0.211) (1.258)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5543.0 5543.0 5543.0 5543.0 5543.0 5543.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 0.026 0.026 1.170 1.154 0.555 1.229

Notes: This table reports shift-share IV estimates of the effect of ambient density on homicide rates and
crime against property. The dependent variables are victimization rates in column (1) and the number of
crimes per resident in columns (2) to (6). To facilitate interpretation, we normalize outcome variables so
that their mean is one – pre-normalization means are reported at the bottom of the table. We include one
observation per CBG × month × moment of the day. We show estimates for the first stage regression in
Appendix Table S.4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S.6: Shift-share IV: Restriction to index crimes

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.651∗∗∗ -0.420∗∗∗ -0.477∗∗∗ -0.082 0.982∗∗∗ 0.718∗∗∗

(0.068) (0.054) (0.048) (0.054) (0.157) (0.121)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5543.0 5543.0 5543.0 5543.0 5543.0 5543.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 0.833 2.689 3.549 0.800 2.554 3.379

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime. We study
the same outcomes as in Table 3, restricted to index crimes. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.7: Shift-share IV, excluding fewer low-population CBGs

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.358∗∗∗ -0.467∗∗∗ -0.407∗∗∗ 0.931∗∗∗ 0.951∗∗∗ 0.935∗∗∗

(0.102) (0.067) (0.078) (0.176) (0.157) (0.128)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,920 130,920 130,920 130,920 130,920 130,920
First stage F-stat 5589.1 5589.1 5589.1 5589.1 5589.1 5589.1
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.747 2.724 6.556 3.572 2.578 6.231

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime using the
same procedure as in Table 3, excluding in the dataset CBGs with fewer than 100 inhabitants, instead
of the exclusion of CBGs with fewer than 200 inhabitants of our baseline specification. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01

Table S.8: Shift-share IV, excluding more low-population CBGs

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.286∗∗∗ -0.423∗∗∗ -0.347∗∗∗ 0.773∗∗∗ 0.895∗∗∗ 0.821∗∗∗

(0.049) (0.056) (0.039) (0.104) (0.147) (0.094)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 129,420 129,420 129,420 129,420 129,420 129,420
First stage F-stat 5330.4 5330.4 5330.4 5330.4 5330.4 5330.4
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.571 2.660 6.313 3.370 2.463 5.909

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime using the
same procedure as in Table 3, excluding in the dataset CBGs with fewer than 300 inhabitants, instead
of the exclusion of CBGs with fewer than 200 inhabitants of our baseline specification. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table S.9: Shift-share IV, using crime data from January 2018 to January 2020 only

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.266∗∗∗ -0.381∗∗∗ -0.318∗∗∗ 0.987∗∗∗ 1.244∗∗∗ 1.099∗∗∗

(0.056) (0.096) (0.053) (0.144) (0.286) (0.178)
CBG FE Yes Yes Yes Yes Yes Yes
CBG-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5543.0 5543.0 5543.0 5543.0 5543.0 5543.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 2.494 1.830 4.403 2.468 1.769 4.315

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime using the
same procedure as in Table 3, but with outcomes built using crime data from 2018-2020 only. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.10: Shift-share IV: Different geographical levels

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

Panel A: CBG
(log) Ambient density -0.299∗∗∗ -0.420∗∗∗ -0.353∗∗∗ 0.824∗∗∗ 0.982∗∗∗ 0.887∗∗∗

(0.048) (0.054) (0.038) (0.123) (0.157) (0.112)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 5543.0 5543.0 5543.0 5543.0 5543.0 5543.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150
Panel B: Census tract
(log) Ambient density -0.421∗∗∗ -0.392∗∗∗ -0.411∗∗∗ 0.395∗∗∗ 0.746∗∗∗ 0.540∗∗∗

(0.0694) (0.0850) (0.0588) (0.0806) (0.164) (0.0948)
Tract FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 48,480 48,480 48,480 48,480 48,480 48,480
First stage F-stat 2401.1 2401.1 2401.1 2401.1 2401.1 2401.1
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.739 2.779 6.601 3.534 2.585 6.197
Panel C: City neighborhood
(log) Ambient density -0.726∗∗∗ -0.432∗∗∗ -0.599∗∗∗ 0.559 2.749∗ 1.576

(0.137) (0.138) (0.105) (0.493) (1.609) (1.007)
Neighborhood FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 5,760 5,760 5,760 5,760 5,760 5,760
First stage F-stat 624.2 624.2 624.2 624.2 624.2 624.2
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.064 2.519 5.653 3.092 2.787 5.951
Panel D: Community area
(log) Ambient density -0.936∗∗∗ -0.500∗∗ -0.760∗∗∗ -0.207 0.729∗ 0.172

(0.273) (0.198) (0.228) (0.202) (0.399) (0.256)
CA FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 4,620 4,620 4,620 4,620 4,620 4,620
First stage F-stat 2156.0 2156.0 2156.0 2156.0 2156.0 2156.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.515 2.423 6.020 3.371 2.333 5.783

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime, with data
aggregated at different geographical levels. There are 2,194 CBGs in Chicago, 811 Census tracts, 96 City
neighborhoods, and 77 community areas. As in Table 3, we include one observation per geographical
area × month × moment of the day. Standard errors are clustered at the geographical area (CBG,
Census tract, City neighborhood, or community area) level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.11: Shift-share IV, excluding shifts from Chicago

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.542∗∗∗ -0.160∗∗ -0.381∗∗∗ 0.661∗∗∗ 1.277∗∗∗ 0.917∗∗∗

(0.072) (0.067) (0.053) (0.141) (0.180) (0.131)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 421.4 421.4 421.4 421.4 421.4 421.4
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime. We study
the same outcomes as in Table 3, and use a variation of the baseline shift-share instrument, where
we exclude data on people originating from Chicago when constructing the instrumental variable. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S.12: Shift-share IV, disaggregating shifters for the Chicago metro area

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.255∗∗∗ -0.431∗∗∗ -0.332∗∗∗ 0.858∗∗∗ 0.937∗∗∗ 0.888∗∗∗

(0.043) (0.050) (0.035) (0.111) (0.142) (0.102)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
First stage F-stat 7948.0 7948.0 7948.0 7948.0 7948.0 7948.0
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime. We study
the same outcomes as in Table 3, and use a variation of the baseline shift-share instrument where we
expand the set of orgin locations corresponding to the Chicago metropolitan area. We replace the origin
locations corresponding to Illinois (outside Chicago), Indiana, and Wisconsin with origin locations for
each ZIP code in the Chicago metropolitan area (excluding those in Chicago), as well as for the areas of
Illinois, Indiana, and Wisconsin that are not in the Chicago metropolitan area. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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Table S.13: Transit station closure IV: First-stage and falsification test

(log) Ambient density
Panel A: First stage (daytime)
Transit station closure -0.170∗∗∗

(0.0388)
CBG × Month FE Yes
Calendar day FE Yes
Observations 244,281
F-stat 19.3
Panel B: Falsification test (nighttime)
Transit station closure 0.0242

(0.0277)
CBG × Month FE Yes
Calendar day FE Yes
Observations 244,281
F-stat 0.8

Notes: This table reports estimated effects of L-stations
closures on ambient density. In Panel A, we show re-
sults measuring density during daytime hours (7 a.m. to
11 p.m.) – this regression corresponds to the first stage
of equation (4). In Panel B, we measure density during
the nighttime, and the regression acts as a falsification
test. We include one observation per CBG × calendar
day, and standard errors are clustered at the CBG level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S.14: Effects of ambient density on additional types of crime: Transit disruption IV

V. rate Crimes per resident

(1) (2) (3) (4) (5) (6)
Homicide Homicide Burglary Damage Trespass Retail

(log) Ambient density 1.273 2.563 -0.911 0.258 0.588 2.175∗∗

(1.686) (1.909) (1.051) (1.057) (1.106) (0.913)
CBG-month FE Yes Yes Yes Yes Yes Yes
Calendar day FE Yes Yes Yes Yes Yes Yes
Observations 244,281 244,281 244,281 244,281 244,281 244,281
First stage F-stat 19.3 19.3 19.3 19.3 19.3 19.3
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 0.030 0.034 0.637 0.844 0.593 2.636

Notes: This table reports transit closures IV estimates of the effect of ambient density on homicide rates
and crime against property. The dependent variables are victimization rates in column (1) and the number
of crimes per resident in columns (2) to (6). To facilitate interpretation, we normalize outcome variables
so that their mean is one – pre-normalization means are reported at the bottom of the table. We include
one observation per CBG × calendar day. Standard errors are clustered at the CBG level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table S.15: Effects of ambient density on on additional types of crime: PPML estimates

V. rate Crimes per resident

(1) (2) (3) (4) (5) (6)
Homicide Homicide Burglary Damage Trespass Retail

Panel A: Correlational evidence
(log) Ambient density -0.705∗∗∗ 0.295∗∗∗ -0.115∗∗∗ 0.047∗∗ 0.122∗∗∗ 0.353∗∗∗

(0.096) (0.096) (0.026) (0.018) (0.032) (0.027)
CBG-day-hour FE Yes Yes Yes Yes Yes Yes
CBG-month Yes Yes Yes Yes Yes Yes
Calendar hour FE 39,852,048 39,852,048 39,852,048 39,852,048 39,852,048 39,852,048
Panel B: Shift-share IV
(log) Ambient density -1.012∗∗∗ -0.012 -0.082∗∗ 0.238∗∗∗ 0.375∗∗∗ 0.927∗∗∗

(0.156) (0.156) (0.034) (0.026) (0.077) (0.104)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 130,620 130,620 130,620 130,620 130,620 130,620
Panel C: Transit closure IV
(log) Ambient density 9.471 10.471 -0.274 -0.138 -0.226 0.194∗∗

(13.158) (13.158) (0.375) (0.757) (0.304) (0.090)
CBG × Month FE Yes Yes Yes Yes Yes Yes
Calendar day FE Yes Yes Yes Yes Yes Yes
Observations 244,281 244,281 244,281 244,281 244,281 244,281

Notes: This table reports PPML estimates of the effect of ambient density on homicide rates and crime against prop-
erty. Estimates for victimization rates correspond to the estimates on crimes per resident, minus one. In Panel A,
we use a calendar hour-level panel and do not instrument ambient density. In Panel B, we use the same dataset and
instrument as in Table 3. In Panel C, we use the same dataset and instrument as in Table 5. For estimation, we use the
control function method, as described in Wooldridge (2015). Standard errors in all panels are clustered at the CBG
level. In Appendix Table S.15, we report estimates for additional types of crime. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.16: Effects of ambient density on crime against persons: Shift-share IV during daylight
time

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.497∗∗∗ -0.507∗∗∗ -0.500∗∗∗ 0.912∗∗∗ 1.039∗∗∗ 0.958∗∗∗

(0.079) (0.064) (0.058) (0.151) (0.177) (0.123)
CBG FE Yes Yes Yes Yes Yes Yes
Moment-month FE Yes Yes Yes Yes Yes Yes
Observations 93,611 93,611 93,611 93,611 93,611 93,611
First stage F-stat 1647.1 1647.1 1647.1 1647.1 1647.1 1647.1
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.671 2.456 6.214 3.556 2.386 6.024

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime against
persons. The dependent variables are victimization rates and the number of crimes per resident – see
Section 2.2 for details. To facilitate interpretation, we normalize outcome variables so that their mean
is one – pre-normalization means are reported at the bottom of the table. We include one observation
per CBG × month × moment of the day. We exclude moments of the day for which more than half of
the duration is after sunset. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.17: Effects of ambient density on police presence

(log) Nb. officers
(log) Ambient density -0.164∗∗

(0.0738)
CBG FE Yes
Moment × Month FE Yes
Observations 130,421
First stage F-stat 5484.3

Notes: This table reports a shift-share IV estimate of
the effect of ambient density on police presence. Po-
lice presence is measured by the (log) number of offi-
cers on duty, see Appendix C for details. We include
one observation per CBG × month × moment of the
day. Standard errors are clustered at the CBG level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table S.18: Shift-share IV, controlling for police presence

Victimization rates Crimes per resident

(1) (2) (3) (4) (5) (6)
Assault Theft All Assault Theft All

(log) Ambient density -0.301∗∗∗ -0.424∗∗∗ -0.355∗∗∗ 0.831∗∗∗ 0.988∗∗∗ 0.893∗∗∗

(0.048) (0.054) (0.038) (0.124) (0.158) (0.113)

(log) Nb. officers -0.005 -0.005 -0.005 -0.001 -0.003 -0.002
(0.007) (0.006) (0.005) (0.006) (0.004) (0.004)

CBG FE Yes Yes Yes Yes Yes Yes
Moment × Month FE Yes Yes Yes Yes Yes Yes
Observations 130,421 130,421 130,421 130,421 130,421 130,421
First stage F-stat 5476.9 5476.9 5476.9 5476.9 5476.9 5476.9
Average 1.000 1.000 1.000 1.000 1.000 1.000
Normalization 3.637 2.689 6.410 3.517 2.554 6.150

Notes: This table reports shift-share IV estimates of the effect of ambient density on crime. This table reports
shift-share IV estimates of the effect of ambient density on crime against persons. The dependant variables
are victimization rates and the number of crimes per resident – see Section 2.2 for details. We control for
police presence – see Appendix C for details. To facilitate interpretation, we normalize outcome variables
so that their mean is one – pre-normalization means are reported at the bottom of the table. We include
one observation per CBG × month × moment of the day. Standard errors are clustered at the CBG level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S.19: Comparison of models predicting people flows

(log) Ambient population

(1) (2) (3)

(log) living and working pop. Yes Yes Yes

(log) living and working pop. (rings) No Yes Yes

Points of interest No No Yes
Observations 368592 368592 368592
R2 0.864 0.871 0.887
Adjusted R2 0.864 0.870 0.886

Notes: This table reports goodness-of-fit measures for our estimation of equation
(6) using three different sets of variables to predict people flows. In model (1),
we predict people flows using only two variables: the number of people living in
the CBG and the number of people working in the CBG. In model (2), we further
include the number of people living/working in CBGs that are within 5 minutes
of travel, and within 5-10 minutes of travel. In model (3), we further add variables
about points of interest in the neighborhood (e.g., schools, stores).
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